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Symbols

~

fp Dispersed phaggrobability density function conditioned by the flow realization

Cp, Vp Single particle velocity

fi Body force acting on species
Ji Species mass diffusion flux
q Thermal flux

gop  Thermal flux due to Dufour effect
Us Gas phase velocity
Up Dispersed phase velocity

V¢  Correction velocity to impose mass conservation due to approximated diffusion
fluxes for chemical species

Vi Species mass diffusion velocity

E Gas mixture internal energy

H;  Gas mixture enthalpy

i Enthalpy of tha'h species in the gas mixture

Ue Gas mixture kinetic energy

Ru Universal gas constant

) Independent coordinate along the tangential direction
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Species specificheat at constant pressure

Gas mixture specific heat at constant pressure

Species specific heat at constant volume

Gas mixture specific heat at constant volume

Binary diffusion coefficient of specia@snto specieg
Diffusion coefficient of speciesinto the gas mixture
Particle diameter

Turbulent kinetic energy associated to the lengthskale
Work done by aerodynamic force on the continuous phase in a time unit
Dispersed phase probability density function

jth component of the body force acting on spedcies
Enthalpy of formation at reference state for tHespecies
Dispersed phase enthalpy

Sensible enthalpy for th& species

Sensible enthalpy for the gas mixture

Fourier coefficient for heat conduction

Phase change heat

Particle mass

Particle number density

Number of chemical species in the gas mixture
Pressure

Energy loss from the continuous phases (e.g. radiation)
Energy dissipation due to the aerodynamic interaction between phases
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Re

St

Independent coordinate along the radial direction
Gas constant

Reynolds number

Particle Reynolds number

Stokes number

Time

Gas phase temperature

Dispersed phase temperature

jth component of specidgsnass diffusion velocity
Species molecular weight

Gas mixture molecular weight

Specific energy flux from the condensed to the gas phase due to the uncorrelated

motion and to the aerodynamic interaction

Species mole fraction

Ash mass fraction in the coal particle

Species mass fraction

m—th functional group mass fraction in the coal particle
Independent coordinate along axis direction

Dispersed phase heat flux vector

Particle uncorrelated velocity

Gas phase flow realization

Species thermodiffusion coefficient

Dispersed phase volumetric fraction

Vv



06y Dispersed phase uncorrelated energy

A Filter lengthscale

dp, Bp Singleparticle diameter

n Kolmogorov’s dissipative lengthscale

', Specific mass flow rate from the condensed to the gas phase

Mpi  Specific mass flow rate of specieffom the condensed to the gas phase

Nrum Specific energy flux from the condensed to the gas phase due to the evaporation
and the uncorrelated motion

Y Cinematic viscosity

oy Species mass production due to chemical reactions
D Dissipation function

My  Specific energy flux from the condensed to the gas phase due to the evaporation
W Generic particle property

oF; Gas phase density

Pp Density of the particle material

T Turbulence characteristic timescale

Tp  Particle relaxation time

€p, hp Single particle enthalpy

9p, (p Single particle temperature

Operators
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Superscripts

I¥ Fluctuation with respect to Reynolds average

" Fluctuation with respect to Favre average
Subscripts

Iry j'" component of a vector in the continuous phase
IF; Continuous phase

(o, j'" component of a vector in the dispersed phase
Hn Dissipative lengthscale

Tensors

OR  Dispersed phase generalized stress tensor

E Strain tensor

Stress tensor

In

Viscous stress tensor
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Introduction

Reseach scope

Much attention has been payed to multiphase flows modelling in the last decades. Two
concurrent reasons can justify such an interest in the research community. The first mo-
tivation is that multiphase flows can be found in a variety of industrial processes and
components (e.g. fluidized beds, gas turbine burners, etc.) as well as in many every
day life devices (e.g. computer printers); the second reason can be addressed to the in-
creasing computational capabilities, which is making Computational Fluid Dynamics
(CFD) to be a more and more useful tool in the design and optimization process of
such devices and components. In the CFD framework, Large Eddy Simulation (LES)
approach is gaining in importance as a tool for simulating turbulent combustion pro-
cesses. Such a technique is nowadays a standard as far as single phase phenomena are
considered, while much work is being done to improve its performance in multiphase
flow applications.

The present work is intended to be a contribution to the development of reliable
models for the simulations of multiphase dispersed reacting flow within LES frame-
work. The aim of this research project is to provide an improvement to the capability
of existing particle transport models in predicting the dispersed phase evolution un-
der dilute condition and for inertial particles. The main applications towards which
this work is oriented are coal powder burners and spray combustors. The coupling
of the LES accuracy in predicting gas phase turbulent combustion and an improved
model for particle dispersion in the carrier gas could help in the design process of such
components.
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Physics of turbulent flows

Turbulent flows are one of the physical phenomena that are easiest to find in nature.
They characterize the evolution of the oceans as well as of the atmosphere. They are
often involved in the operation of man-made devices. In fact, turbulent flows represent
the natural status of fluid motion while laminar flows are the exceptions, even though
the sequence of their study in mechanical engineering has been inverted. Differently
from the laminar case, in turbulent flows the fluid variables at a given point are func-
tions not only of the position but also of time and the instantaneous velocities present
components normal to their averaged values.

In Figure[l a typical example of a two-phase turbulent flow is shown. By paying
attention to the multitude of structures that can be seen in the plume of the pyroclastic
eruption of St. Helene’s mountain, it may be clearer what is meant when turbulence is
said to be an example of deterministic chaos. A turbulent field is in fact characterized
by the presence of organized structures (eddies), presenting a finite dimension in space
(lengthscale) and time (timescale). The Navier-Stokes equations, used as a model for
fluid dynamics, are able to describe any turbulent field evolution (hence the "deter-
ministic" connotation) for common fluids, but no general solution is available. The
strong nonlinearity of the Navier-Stokes equations makes it impossible to gige an
priori estimate of the evolution of perturbations in a turbulent flow. Hence the chaotic
nature of turbulence. Figufé 1 also shows how the size of the involved structures may
differ by many order of magnitude. Although the energy distribution over these scales

Figure 1: St. Helene’s eruption

may appear at first sight completely unorganized, experimental data as well as Kol-
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Figure 2: Turbulence Energy Spectrum

mogorovs theory [1] demonstrate that the turbulent kinetic energy distribution over
the scales can be represented by the energy spectrum shown in[Bigure 2. Different
characteristic lengthscale can be here identified through the corresponding wavenum-
bers. The integral lengthscdle(k;) identifies the energy containing scales. It can be

expressed by
1

(gl

whereJ' is a fluctuation with respect to the averaged velocity dnd| is the L2-

/Oo U (X, t)U' (X +r, t)dr (1)

norm. From the integral lengthscale, energy is transfered to smaller scales down to
Kolmogorov’s scale (kk) that is given by

Rg=—=1 (2)

whereReis the Reynolds non dimensional numberjs the kinematic viscosity and

Un is the characteristic velocity of Kolmogorov’s scale. TRenumber can be seen

as the ratio of diffusion and convection characteristic times. The factRat= 1

says than is the dissipative scale where kinetic energy is transformed into heat. As
reported in Figuré]2 the slope of the spectrum plot betweemdkk is —5/3 (when
compressible flow effects are weak). This is a result of Kolmogorov’s théory [1] that
has been experimentally validated. This range of wavenumbers is ceditidl range.

The fact that this feature of turbulence is statistically reproduced by all the turbulent
flows confirms their deterministic nature and provides a link for modelling strategies.
Another important lengthscale reported in Figure 2 is the Taylor eal&r). This is

an index of the position in the wave number space of the inertial range.
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In order to study turbulent flows, due to the lack of a general analytical solution,
scientists must numerically solve the Navier-Stokes equations. A complete and reli-
able solution should resolve all the wavenumbers down to Kolmogorov’'s igcalas
approach does not require any modelling and it is cdlledct Numerical Simulation
(DNS). Nevertheless, performing a DNS is usually not possible for practical applica-
tions, where the Reynolds numtiRebased on the domain characteristic dimengion
is too high. It can be shown for the lengthscale separation that

1 Re ©)

thus in3D calculations one will need more thae! grid pointsto perform a DNS
calculation. Since in practical applications it is easy to fta ~ O(1(P) or higher,
one can understand how the computational effort necessary to perform a DNS is not
affordable by any present computer. To given an idea, the physical time required to
perform a time step on a grid with®.10° nodes, with a single core of a core2 duo
Intel processor P8700 and the HeaRT code used in this work, is approximately 25 s.
The simulated time during a numerical time ste@(d078) s.

In order to overcome the computational cost of a DNS, two modelling strategies
are available:

e Large Eddy SimulatioLES): only a part of the spectrum is directly simulated
while the highest frequencies are modelled. This approach allows to retain the
unstationary features of turbulence and the results have an high level of reliabi-
lity. The computational effort is still quite heavy.

e Reynolds Average Navier StoKBANS): all the turbulent spectrum is modelled
and the time dependence is removed from the solution. It is the most widely
spread technique because of its low computational cost. Nevertheless RANS
models are complex and their applicability not certain. Calibration constants
may change from a configuration to another and the final results are thus not so
reliable.

The LES approach is thus growing in importance since, when a sufficient portion of
the energy spectrum is resolved, it is the only available and reliable tool with prediction
capability for complex flows. In the present work this features will be coupled with
new techniques developed for the dispersed phase in order to obtain a predictive tool
for dispersed multiphase flows under dilute conditions.
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Physics of the dispersed phase

Dispersed multiphase flows involve different physical phenomena each of them cha-
racterized by a proper time and length scale. For example, a particle moving in a
carrier phase is subjected to the effects of several forces (drag, lift, added mass...etc);
when the considered particle is not rigid, his shape and integrity depend on the ba-
lance of the pressure, viscous stresses and surface tension. Furthermore, when mass
exchanges take place at the patrticle interface they introduce a continuous variation of
the considered forces, caused by the change of particle dimensions. This large variety
of phenomena and associated scales imposes to carefully choose the modelling stra-
tegy looking for the phenomena that are negligible or that can be evaluated by simple
relations, in order to develop a reliable but also usable model.

Following the above considerations, the first thing to be done is to provide a classi-
fication of the different possible regimes for dispersed multiphase flows, and to select
then the conditions the model to be developed is supposed to be applied to. The first
classification that can be easily found in the literature is related to the different levels of
coupling between the carrier phase and the dispersed ones. This classification is based
on the dispersed phase volume fractegranother useful parameter to understand the
kind of interaction between particles and turbulence is the local Stokes nushber
which is the ratio between a particle response time to the aerodynamic forces and a
characteristic time of turbulence. The level of coupling is generally classified into four
degreed [3]; in Figurel 3 the classification for particle-laden flows is reported. Coupling
regimes are classified into

e one-way: whereby the particle motion is affected by the continuous phase but
not vice-versa. This is the case of dilute dispersions of small particles that do
not exchange mass with the carrier flow;

e two-way: whereby the dispersed phase affects the continuous phase through the
inter-phase coupling, e.g. (mass, momentum and energy exchange). These are
the conditions typically met inside fuel spray combustors as well as in powder
burners, far enough from the injector, where the fuel volume fraction is small
enough to neglect particle-particle interactions. Under these conditions small
particles (i.e. smalt) will subtract energy to the turbulent scales while larger
particles (highefSt) will transfer energy to the scales comparable to their wake



Introduction 6

I i
y I I
i T I |
| |
2. I 1
1ot I 1
i i
] : particles :
1 enhance |
107 _| turbulence : peodustion :
uasi | |
| nneffected Bt e e |
: particles :
1” I enhance 1
: dizdpation :
! l -
T T T T T T T T T
-8 s g -2 1P oy
Ome-Way Trwe-Way Fonr-Way
Coupling Ceonpling Coupling
Huid fhajd flujd
particle particle F-a[tin:]e
pavticle

Figure 3: Turbulent particle laden flow regimes. Adapted from referérice [2]

dimension;

¢ three-vay: whereby individual particle flow disturbances locally affect the mo-
tion of the other nearby particles, i.e. fluid-dynamic interactions between parti-
cles;

e four-way: whereby particle collisions are present and have an influence on the
overall particle motion.

Note that in Figuré I3 the range for three-way coupling is not shown explicitly
because, for particle laden flows, it overlaps the four-way coupling one: when particles
are so close to each other to feel the interaction through the aerodynamic disturbances
induced by the particles themselves, it is likely they will also collide.

In the present work dilute conditions for inertial particles are assumed. This as-
sumption allows not to model particle-particle interactions and to focus on the dis-
persed phase evolution under conditions that are of interest in real combustor appli-
cations. Consider, for example, a spray injector in a gas-turbine combustor: few mil-
limeters after the fuel injection the spray is completely developed and the fuel volume
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fraction is sufficiently small to justify the use of a two-way coupling model. It seems
therefore reasonable to separately model the spray injection, instead of conditioning
the model for the all chamber to account for conditions that will only occur in a small
portion of the domain. Similar considerations hold for coal powder entrained flow
reactors or slurry reactors. Since the present work is oriented towards this kind of
applications, only two-way coupling effects will be accounted for in the model and
particle-particle interactions will be neglected. Furthermore the assumption of dilute
conditions allows to estimate the needed source terms in the carrier phase equations
by a proper averaging procedure of the exchange terms calculated for a single particle,
while under three-way coupling assumption this would not be strictly possible.

The second step is to determine the mass, momentum and energy exchange me-
chanism for the isolated particle. The momentum transfer between particle and carrier
phase depend on the forEg acting on the particle; this force can be splitted in differ-
ent contributions [4]

ZFp:FD+Fg‘|‘FL+FS+FH+|:\/V (4)

whereFp is the aerodynamic drag forcEy is the gravity forceF_ is the lift force,

Fs is the Tchen forcely is the Basset History force arfgy is the wall interaction

force. Fstakes into account the acceleration of the carrier flow at the position occupied
by the particle while the history force accounts for its wake development. The above
separation is not always valid as there can be non linear interactions between various
forces but typically they are small enough to be neglected. A preliminary estimation of
the weight of each force shows (séé [2]) that for heavy particles the prominent forces
acting are the gravity force, the drag force and the Basset force. The history force scales
like the inverse of the diameter while the drag force scales as the square of inverse
diameter|[[2]; the drag force is thus the dominant force, together with the gravity, for
small particles. In our model the drag force for the single particle is modeled by an
expression based on the Stokes drag (strictly valid only for creeping flows) corrected
by a factorf function of the particle Reynolds numbigg,

Ur@p — Cpldp
Rg = ——> PP 5
& v (5)
where us@p is the carrier phase velocity at the particle locatian, is the particle
velocity, d, is the particle diameter. With this assumption the drag force acting on

a particle can be expressed by = *(C%;”@p). Heret, is the particle relaxation
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time that can be interpreted as the time taken by the particle to reach the 63 % of
the carrier phase velocity, when the patrticle is initially at rest and the carrier phase
velocity is constant. This parameter is used, together with a characteristic tiofe

the carrier phase (e.g. a turbulent time sadle to build the non dimensional Stokes
numberSt= I—f The Stoles number is a very important parameter since it measures
the possibility for the particle to follow the velocity fluctuations corresponding to a
given scale of the fluid velocity field.

Regarding the mass and energy exchange, they will not be an object of the present
work since the latter will be focused on the transport model improvement. In addition,
the mass exchange model depends on the particular fuel and operational range and will
therefore not be treated in this work.

As to particle heating, when practical applications are considered, the models
adopted in the literature are usually rather simple. This is due to the fact that particle
heating should be modelled taking into account the effects of turbulence, combustion
and all related phenomena in realistic 3D enclosures. Hence, a compromise between
the complexity of the involved phenomena and the computational efficiency of the
adopted models is an essential precondition for a CFD tool. A complete model should
account for:

e the effect of convection;

the effect of the flow around the patrticle (e.g. different mass flow between up-
stream and downstream stagnation point);

fractional mass exchange of multicomponent fuels;

temperature distribution inside the particle;

the effect of internal recirculation caused by the frictional stresses on the surface
(for liquid fuels);

other minor phenomena.

Several models can be found in the literature [5]; the so called "Infinite conductivity
model" is usually selected because of its simplicity. In this model the particle inner
temperature is radially constant but variable with time. Since this model is developed
for a particle in a stagnant environment an empirical correlation is used to account
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for convection (Ranz-Marshall). This model has been implemented in the CFD code
used for the validation of the transport model but, since no reactive validation could be
performed during this work, it has not been validated.

From the brief review of the phenomena concerning an isolated particle in an hot
convective environment, one can easily see the importance of the particle diameter.
In real devices a spectrum of particle sizes is usually found. These dimensions range
from below the micron up to the hundred of microns, depending on the kind of reactor
that is being considered. It is worth to say that even if it were possible to inject only
particles of a given size, the cloud becomes polydispersed [6]. This is due to the
different mass exchange rates experienced by the particles in different zones of the
combustor. From experiments and theoretical observation many researchers developed
different size distribution functions, but, since many of the models are developed for
monodisperse distributions, it is useful to define some representative diameters that
can reproduce some aspect of the polydispersed nature of the spray. They are usually
defined as
/D'« f(D)dD

P = 7bi+ f(D)dD

(6)

The mostknown are the Sauter diametBg, and the surface diametBrg. The first

one has the same volume to surface ratio of the whole particle cloud and for this reason
is frequently used in combustion; the latter has the same surface of the whole particle
system and is sometimes preferred to the Sauter diameter for problems in which the
mass exchange rate is particularly important (e.g. ignition).

State of the art

In scientific literature several modeling strategies for the simulation of multiphase dis-
persed flows are present; they can be roughly divided in two classes, Lagrangian and
Eulerian, with respect to the framework in which the secondary phase is described. In
the past, LES technique has been used together with a Lagrangian description for the
dispersed phasgl[7]. This is due to the easiness in modeling a single particle behavior
with respect to model the behavior of a group of particles, present in a given control
volume at a given time instant. This historical trend makes it easy today to find LES
simulations of reacting two-phase flows in literature [8], performed with this approach.
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Greater attention has been more recently gained by the Euler-Euler formulation.
This is mainly due to the massive diffusion of parallel computation techniques as a
standard to increase computational capacity. The parallelization of a numerical code
for two-phase dispersed flow application with the Eulerian-Lagrangian (EL) approach
is a difficult task. Workload distribution among processors is not straightforward. In
addition the large amount of informations that have to be exchanged among the CPUs,
and the time needed to do it, tend to decrease parallelization efficiency. This is espe-
cially true when patrticle distribution is not uniform throughout the domain [9].

A two-fluid Eulerian model was first proposed by Druzhinin and Elghobashi [10].
This model laid on the assumption that particle equations were obtained by filtering
on a length scal& smaller than the smallest characteristic s¢glef particle velocity
field. This hypothesis ensures the unicity.gf at the scalép,.

Simonin et al. [[11] proposed a model for dispersed two-phase flows, based on
the separation of particle velocities into a "mesoscopic” correlated part, representative
of a group of particles, and an uncorrelated part proper of each single particle. They
also proposed a correlation, strictly holding for Homogeneous Isotropic Turbulence
(HIT), for the evaluation of the turbulent kinetic energy part due to uncorrelated mo-
tion. Kaufmann|[2] proposed models for the second order velocity moments and the
terms appearing after filtering the equations of Simonin et'al. [11] model, under the
assumption of non-colliding particles. Moreau![12] madeaomiori evaluation of the
closures proposed by Kaufmarin [2] by applying them to Direct Particle Simulation
(DPS) results. Selected models were then applied in LES simulations of particle laden
flows [13] and confined bluff-body gas-solid flows [9].

All the cited models are strictly developed for monodisperse sprays but extension
to polydispersion are also present in literature. The classical way to extend a model to
polydispersion is called Sectional Method. The size PDF is splitted in n classes, each
of them representing a monodisperse distribution. For each class it is possible to apply
one of the cited model adding proper relations to define the migration of particles
between different classes. Another way is the so called "Presumed Shapé PDF"[14]
that calculates the deviation from monodispersion as moments of the PDF.



Introduction 11

Summary of this work

In Chaptef Il the model equation for both continuous and dispersed phase will be pre-
sented. For the latter in particular the model discussed by Mofeau [12] and further
developed in([15] will be presented. The model applicability holds when inertial par-
ticles within dilute conditions are considered. These are the conditions typically met
in industrial as well as in aeroengine burners, with the exception of the injector region,
where the diluition assumption is often not met. A revisealctal Model(FM) for the
SGS terms closure is also presented. The coupling between continuous and dispersed
phase will be treated by classic empiric correlations and mass exchange models taken
from the literature.

In Chaptel 2 the adopted numerical treatment for both phases is described. A robust
numerical treatment for the dispersed phase, basedFramita VolumeENO (Essen-
tially Non Oscilatory) scheme is here proposed.

In Chaptei B the validation of the adopted transport model and of the developed
numerics is presented. The obtained results are described and criticized.



Chapter 1

Mathematical model

1.1 Continuous phase model

When two-phase flows are considered, great attention must be paid to the assumptions
under which the adopted model is developed, since these assumptions will affect the
transport equations that govern the evolution of the two-phase system. The model de-
veloped in the present work is based on two main hypothesis: a) a condensed phase
is dispersed in a continuous gaseous phase; b) dilute conditions are assumed. Under
these hypothesis two way coupling between phases can be assumed, meaning that the
equations governing each phase evolution present terms that account for the interaction
with the other phase. Under dilute conditions it is also possible to model this interac-
tion in the continuous phase by simply adding source terms to the single phase balance
equations.

Let a mixture ofNs ideal gases in local thermodynamic equilibrium and chemi-
cal non-equilibrium be considered. The complete set of transport equations for the
gas phase, that expresses the conservation of mass, momentum, energy and chemical
species mass fractions, together with the thermodynamic state equation, is

e Conservation of Mass

0
2L+ 0 (prur) =T (1)

e Conservatiorof Momentum

0pfUf
ot

Ns Up—u
+D~(prfo):D«§+pf ZMf|—erp+appp( p'[ f) (12)
i= p

12
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e Conservation of Energy (internal + kinetic)

%pf(er?O*'D'[Pfuf(er?O]ZD'@Uf)—D'q (1.3)

N a a
+pf21Yifi (uf +Vi)+iip(up—uf)'uf +$7pp(up—uf)2
=

p P
Ept 6;f
1
—IpHp—Tp <2Up : Up> —Ip
——
n
e Conservatiorof Species Mass Fraction
o0p+Y,
%t L+ 0 (prugY) = —0-Ji+prog —Mp; (1.4)
e Thermodynamic StatEquation
oy Mg (L5)
p=ps i;VVI f :

The termsEps andQp+ in equation[(1.B) represent the work done by the aerodynamic
force on the continuous phase and the energy dissipation into heat during aerodynamic
interaction respectively. When larger particles are considered (Ragepart of Qp+
should account for the energy transferred to the turbulent structures in the particle
wake. However, in the limit of small particles, the energy injection will occur at dissi-
pative scales and the assumption thatl} is dissipated into heat is acceptable.

In equations[{1]3) an@{1.4) the relation between the masdflaktheit" species
due to diffusion and the corresponding diffusion velo&ityhas been used

Ji = ptYiVi (1.6)

Equations[(1J1)E(1]5) must be coupled with the constitutive equations which de-
scribe the type of flow, and in particular its behavior in relation to molecular properties.

It should be noted that summation of all species conservation equationslin (1.4)
yields total mass conservation equationl(1.1), so that thesel equations are linearly
dependent and one of them is redundant. Furthermore, to be consistent with mass
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conservation, the diffusion fluxes and source terms due to chemical reactions and mass
exchange between the two phases must satisfy

Ns Ns Ns
ZlJi =0 lei =0 erp,i =Ty (1.7)

wherel j is the overall mass flux from the dispersed towards the gas phaselvhile
is the fraction of such mass flux involving ti species.
After subtracting from[(1J3) the conservation equation for the kinetic energy[16],
the energy equation can be written in terms of enthaifpyas:
0 Dp Ns
ot (pf}[f) +0- (pf}[fuf) = Dt U-g+ Pt — Qioss+ Pt iZLYifi Vi (1.8)
— &EB_H p+ Qpf
M
Hereq is theheat flux;®; =1: [ _is the dissipation function, beingthe viscous part
of thestress tensoQ|ss the heat loss (e.g., by radiatiof)the body force per unit of
mass acting on th&" chemical species that diffuses at velodity
The heat fluxg is given by three contributions, Fourier, Dufour and that associated
to the diffusion of each species transporting its own enthalpy:

Ns
q=0r +0dp+ay = —k'T ¢ +dp +ps ZlYi}[f,iCrf)Vi (1.9)
i=

1.1.1 Filtered conservation equations

It is common practice, while studying turbulent flows, to treat velocities and scalars
with classical Reynolds averaging, where the quartity split into a mearg and a
deviationfrom the mean denoted ly. Nevertheless, in turbulent flames, fluctuations
of density are observed because of the thermal heat release and classical Reynolds ave-
raging induces some additional difficulties. For example, averaging the mass balance
equation leads to:

Pt O g+ p) =0 (1.10)

aXi

where thevelocity/density fluctuations correlatiqnw appears.
To avoid the explicit modeling of such correlations, a Favre (mass weighted) average

is introduced and the generic quantitys then decomposed intb= g+ "’ where
I g quaniifys p tp=q+q
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q= pra (1.11)
Pf
The objectve of Large Eddy Simulation is to explicitly compute the largest structures
of the flow (typically the structures larger than the computational mesh size), while the
effects of the smaller ones are modeled. In LES, the relevant quantdresfiltered in
the spectral space (components greater than a given cut-off frequency are suppressed)

or in the physical space (e.g. weighted averaging in a given volume). The filter opera-
tion is defined by:

T(x) = /D F(X) Ga (x X) d¥ (1.12)
whereG, is the filter function. The latter must have the following properties:
1. Ga(X) = Ga(X);
2. [pGa(x, X)dX =1,
3. Ga(x) small outside the compact domdix— 5,x+5].
Standard filtersre:

e A cut-off filter in the spectral space:

(1.13)

_ 1 ifk<mA
GA(k)={ -

0 otherwise

where K is the spatial wave number. This filter preserves the length scales
greater than the cut-off length scale 2A.

e A box filter in the physical space:

1 A
s ifx| <5
G, %2, %) = { 8 othtlerwisze

where(x1,X2,X3) arethe spatial coordinates of the location x. This filter
corresponds to an averaging of the quantity q over a box of’size
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e A Gaussian filter in the physical space:

6 \%? 6 (2, 2,2
Ga(X1,X2,X3) = ) exp—E XT + X5+ X5

By applyingthe filter operator to the system equations, balance equations for the fil-
tered quantitie§] andq are obtained.In this work, the filter operation is implicitly
defined by the mesh size. The uncertainties related to the procedure of exchanging
the order of the filter and differential operators (commutation errors), are neglected
and assumed to be incorporated in the sub-grid scale modeling. It has however been
demonstrated that the commutation error is © ([{A7]. Favre filtering leads to a set of
equations formally similar to the Reynolds averaged balance equations:

Mass:

oo a4 _ _
T—FG_XJ(pfuf’J) =—Tp (1.14)

Momentum:

0x  O0X; 0Xj

0 _ _ o _ _
a(pfuf,i)+a_xj(pfuf,iuf,j) (1.15)

N.
Upi —Ufi) _ <o
S=

= ousj  OUf | 2_0Us 3
TI] - u< BXJ +—aXi )—:—%H—ak 6” (116)
% = PyUr,ly,j — Pyl il (1.17)
Species equations:
0,_ & 0 / ~_ /. o aJi?GS_
a(pf“Ha—xj(Pme) = —a—xj(pr.V.,>+pfux— o —Tpi (1.18)
33%% = PViur; —peYidh (1.19)

where theassumption has been made, and will be used in the further development,
that the subgridscale effects due to diffusion, arising frﬁmmay be neglected with
respect to those due to the SGS species trandpbit
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As to the energy equation:
0/ ~ 0 (.~ \_Dp 0/  sc8 = =~
a(pf}[f>+a_xj(pf}[fuf,j> T Dt _an (qj+qj >+¢f—QIoss (1.20)

N
—f-ﬁf.ZlYifijVij_rh_np‘f’pr
i=

Oh5 o= Py Hius | — Py HiUr | (1.21)

Againthe subgridscale heat flux due to diffusion effects has been considered negligible
with respect to SGS heat transpgrt S

Finally, the filtered equation of state is
T e
P=P¢ ) Ry Tt =Pr ) Ry Tt (1.22)

Another importantassumption that has been adopted in the development of the
present model is that particles present a high value of their inertia. The meaning of
this sentence and its importance in the development of the model is explained in [15].
Among other implications, the restriction to highly inertial particles allows to assume
that particle motion is not influenced by the unresolved scales of turbulence. A first ex-
ploitation of this statement leads to the absence of SGS modeling in the dispersed phase
balance equations. Another turnaround is the possibility to model the filtered source
terms that account for phase interaction, by means of their unfiltered form, where gas-
phase filtered variables take the place of their unfiltered values. This possibility is also
granted by the fact that most of the source terms accounting for phase interaction are
modeled after semi-empirical correlations (see for example [2]) that implicitly take into
account the turbulence effects. Nevertheless, these correlations are based on the gas-
particle relative velocity and correction may be necessary when this parameter is small
but the turbulence intensity is high. In such a situation the correlations may in fact pre-
dict a laminar behavior. These effects are probably more important in the evaluation
of the masgI p) and hea(ll) exchange than in aerodynamics forces, since when the
gas-particle relative velocity is low the particle momentum is close to its equilibrium,
while temperature and species concentrations may be far from their own. Neverthe-
less, the improvement of the mass and heat exchange source terms goes beyond the
objectives of the present work, being the latter oriented to improve the transport model
and numerics. Therefore, these topics will not be addressed here.
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The gquantities to be modelled are:

the unresolved Reynolds stress&$S requiring asubgrid scale turbulence

model;

the unresolved molecular transport fluxess

the unresolved heat transport fluxes>S

the filtered chemical reaction rad&;

¢ all the source terms accounting for phase interactions.

The filtered balance equations presented in this section, coupled with subgrid scale
models, may be numerically solved to simulate the unsteady behavior of the filtered
fields.

1.1.2 The Constitutive Equations

Each material has a different response to an external force, depending on the properties
of the material itself. The constitutive equations describe this behavior. In particular,
for a gas mixture they should model the stress-strain rel&@ierk, the heat fluxq

and thespecies mass fluy;. In the preceding section the hypothesis has been made
that SGS effects other than those accounted for in the source terms and those due
to small scale transport are negligible with respect to these contributions. Given this
assumptions, all the quantities that will appear in the following development must be
considered as filtered values. The average S[T}gmdﬁ arethus dropped.

The Diffusive Momentum Flux

For all gases that can be treated as a continuum, and most liquids, it has been observed
that the stress at a point is linearly dependent on the rates of strain (deformation) of
the fluid. A fluid that behaves in this manner is called a Newtonian fluid. With this
assumption, it is possible to derive a general deformation law that relates the stress
tensorSto the pressure and velocity components:

S=(—p+A0-uf)l +2E=—pl+T (1.23)
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whereE is the strain rate}t is the coefficient of viscosity (dynamic viscosity) aid

is the second coefficient of viscosity. The two coefficients of viscosity are related to
the coefficient of bulk viscosityy, by the expressiop, = 2/3u+A. In general, it

is believed thaty, is negligible except in the study of the structure of shock waves
and in the absorption and attenuation of acoustic waves. With this assumption (Stokes
hypothesis)A is equal to—2/3y, and the viscous stress tensor becomes:

~,0ugj 1 /dus; Odus
T|J _}\W—%Zu{é (a_)(J+a—)Q)] . (124)

Pressure ahe macroscopic level corresponds to the microscopic transport of momen-
tum by means of molecular collisions in the direction of molecules motion. Instead,
molecular momentum transport in other directions is what at macroscopic level is
called viscosity. They are of different nature. In terms of work done, when continuous
distribution are considered, pressure produces reversible transformations (changes of
volume), while viscous stresses produce irreversible transformations where dissipation
of energy into heat occurs.

The Diffusive Heat Flux

The heat fluxg for a gaseous mixture s chemical species consists of three different
transport contributions.

The firstis the heat transfer by conduction, modeled by the Fourier’s law. At the mi-
croscopic level it is due to molecular collisions: since kinetic energy and temperature
are equivalent, molecules with higher kinetic energy (at higher temperature) "energize"
collisionally the ones with less kinetic energy (at lower temperature); in the continuum
view, heat is transfered by means of temperature gradients.

The second heat transport contribution is due to molecular diffusion, acting in mul-
ticomponent mixtures and driven by concentration gradients: wh¥ieZ 0, each
species diffuses with its own velocity. In this way each molecule transports its own
enthalpy contribution; this means that there is energy transfer even in a gas at uniform
temperature, or in a rarefied gas (with negligible conduction).

The third heat transport mechanism is the so called Dufour effect. The Onsager
principle of microscopic reversibility in the thermodynamics of irreversible processes
implies that if temperature gradients cause species diffusion (thermo-diffusive or Soret
effect), concentration gradients must cause a reciprocal (Dufour effect) heat flux. The
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Dufour effect is neglected. [18].
The total energy fluxj is finally modeled:

Ns Ns Ns X O
— kfm ¢+ H; i YiVi+ R, T =L (vi— Vi) . 1.25
q f pfi; £iYiVi+ Ru fi;Z;LVVlDij ( i ]) ( )

whereaq; is thethermodiffusion coefficient of thi" species

The Diffusive Species Mass Flux

To be useful, equation_(1.4) requires the knowledge of diffusive species mass flux,
Ji, that expresses the relative motion of chemical species with respect to the motion
of their (moving) center of mass. Within the continuum mechanics this motion can
be expressed by a constitutive law rather than additional momentum equations for
chemical species. Both modelling and calculation of individual species diffusive mass
fluxes is not easy. The distribution N chemical species in a multicomponent gaseous
mixture, at low density, is rigorously obtained by means of kinetic theory [18]

Ns % X: ]
X = Z)Q—..j(Vj—Vi) + (Y|—x|)—p +
i i p

'

DV PG

(1.26)

L P NSYY_(f_ [+ N XX (a,— on)Erf
ij]_IJ F & PtDij \Y) Y

J/ J/

BF SE
whereDjj is the binary diffusion coefficient of speciesnto the specieg, X; and
Y; are the molar and the mass fraction of th& species respectively; the body
force per unit mass, acting on speciesij the thermodiffusion coeffcient of species
j. Equations[(1.26) are referred to as the Maxwell-Stefan equations, since Maxwell
[19,/20] suggested them for binary mixtures on the basis of kinetic theory, and Stefan
[21,122] generalized them to describe the diffusion in a gas mixture Mgtspecies.
The main feature of (1.26) is that they couple inextricably all diffusion velociigs
and thus all fluxes to all concentratioXg andY; and their gradients. According to
(1.28), concentrations gradients (e ) can be physically created by:

¢ differences in Diffusion Velocities (DY
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e Pressure Gradients (PG) ("pressure diffusion™)

¢ differences in Body Forces (BFper unit mass acting on molecules of different
species;

e thermo-diffusion, or Soret Effect (SEi.e., mass diffusion due to temperature
gradients, driving light species towards hot regions of the flow.

This last effect, often neglected, is nevertheless known to be important, in particular
for hydrogen combustion, and in general when very light species play an important
role. The Soret effect has the Dufour effect as reciprocal, but is more important than
this. The linear systeni (1.26) for thg has sizeNs x Ns and requires knowledge of
Ns(Ns—1)/2 diffusivities. OnlyNs— 1 equations are independent, since the sum of
all diffusion fluxes must be zero. This system must be solved in each direction of the
frame of reference (coordinate system), at every computational node and, for unsteady
flows, at each time step. Extracting the diffusion velocities is a mathematically difficult
task, therefore, simplified models, such as the Fick’s law and the Hirschfelder and Cur-
tiss’ law, are preferred in most CFD (Computational Fluid Dynamics) computations.
These simplified models still involve the estimation of individual chemical species dif-
fusion coefficients into the rest of the mixture; also at this step some simplifications
are usually assumed. These will be analyzed in the hereafter.

Many combustion codes use a simplified model for the diffusion velocities, the
Fick’s law approximation, assuming

e binary mixture (two specie& andB),
¢ thermo-diffusion negligible,
[ ] fA —= fB

This law is usually adopted for the sake of simplicity also for multi- component mix-
tures (more than binary):
Ji = psYiVi = —psDOY, (1.27)

A more accurate (but still simple) approximate formula for diffusion velocities in
a multicomponent mixture is that of Hirschfelder and Curtiss, which has been used in

this work.
[X .
Vi = —DiW' (1.28)
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with :

1-Y
Ns Xj
i1, i By

D = (1.29)

The coeficient D; is not a binary diffusion but an equivalent diffusion coefficient
of species into the rest of the mixture. Mass conservation problem arises in cal-
culations when inexact expressions for diffusion velocities are used (as when using
Hirschfelder’s or Fick's laws), and in general when differential diffusion effects are
considered, i.e., the species diffusion coefficients are different. In fact, the diffusion
velocities do not necessarily satisfy the const@hﬁl\]i = zi'\';lpriVi =0. Asim-
ple empirical remedy to impose global mass conservation consists in subtracting any
residual artificial diffusional velocity from the flow velocity in the species transport
equations. In fact, summing all species transport equations, the mass conservation
equation must be obtained, while it is found:

ops

Ns
S0 (pru) = ~0-(or 3 ¥V (1.30)

Thus, inorder for the conservation of mass to be respected, age¥fiinvolving
a correction velocity/® must be introducedv® is defined as

Ns
Ve=—-SF VYV, (1.31)
2
and assuming Hirschfelder’s law holds, it becomes

N.
s W

Ve = ' DilX ; 1.32
i;Wmix iX (1.32)

The correction velocity must be computed at each time step and added to the flow
velocity in the species convective term. The corrected convective term of species trans-
port equations must then become

Mp furYy) — Mp ¢(ur +VOYi) (1.33)

With this "trick”, any artificial flow due to the nonzero diffusional mass flux is thereby
cancelled, and solving foNs — 1 species and global mass, results into a "correct”
concentration for the la$ds species (the last species can be obtainedraiiiszlYi).
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1.1.3 Some Thermodynamics Definitions

In a multi-species system the enthalpg¥ (Y;, Tt ), is given by two contributions: one

is the potential energy of the molecular force field (expressed in terms of formation
energies that must depend on temperature because the molecular force field changes
when temperature changes), and the other is the kinetic energy of molecules (sensible
enthalpy), obtained considering all their degrees of freedom (expressed in terms of
specific heat) and not only the effect of temperaflire The enthalpy#; (Y, Tr) is

defined as

Ns
He (Y, Tg) = ZYiﬂf.,i(Tf) (1.34)
i=
and therefore
ZY[ (Tf) +hs Tf] ZYh (Ts) + hs(Y;, T¢) (1.35)

whereY; is the mass fraction of th&' chemical specieslnﬁ?i (T¢) andhg (T¢) are respec-
tively the formation and the sensible enthalpies ofithepecies.
The sensible enthalpy is defined thermodynamically:

dhs = CpdTs (1.36)

and therefore .
f
hs(Yi, Tr) = Cp(Yi, Tr)dT +hs(¥i, Tt ) (1.37)

fr
where Ty, is a reference temperature a@g(Y;, T¢) is the specific heat at constant
pressure given by

Ns
)= YiCp(Tt). (1.38)
2
Also the internal energy is defined thermodynamically:
de;=C,dT; (1.39)
and therefore .
f
(Y, TH) = [ G Tr)dT +ex(¥. Try) (1.40)
for

whereC,(Y;, Tt ) is the specific heat at constant volume given by

Cu(Yi, Ts) = ZYC\/ (Tr) (1.41)
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The relation between the sensible enthalpy and the internal energy is obtained by

subtracting[(1.40) from_(1.37):

dhs=des+ (Cp—C,)dTs = des+ Ryd Ty (1.42)
having used
~-C/=Ry. (1.43)
The gas constariy is defined as
Ry Ry < ¥
= = = 1.44
Wi 1/31%, ¥i/W X (1.44)

where R, is theuniversal gas constant, ald,ix andW are respectively the mixture
and the single species molecular weight.

Energy Equation in Terms of Tf and Cy

The aim of this subsection is to derive the energy equation written in terms of the fil-
tered temperature and specific heat at constant pressure starting from equation (1.20),
since this is the form used in the HeaRT code used for validation in the present work.
When termodynamic relations are applied to filtered quantities, terms accounting for
subgrid scale effects should appear. This terms will be omitted in the following deriva-
tion and their effect will be thought as modelled in the SGS heatdft5Stogether

with gnSCS

The material derivative of enthalp; (Y;, Tf) can be calculated as:

D#H; (Y., Tt) DM(Yi,Tf>DTf+NS D#; (Y, Tt) DY,
Dt B DT Dt i; DY, Dt

DT s
= Copgr + Zﬂf (1.45)

havingused equation$ (1.B5) arld (1.36) for working &u#s (Y;, T¢)/DT; and equa-
tion (1.34) for working ouD #; (Y;, Tt ) /DY;. Using the species mass fraction transport
equation foDY; /Dt yields

DAH; (Y, T DTt Ns

—0- (priVi) —0-37%54+ proy — rp,i}
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wherew; the production / destruction rate of speciesd an approximated form for
theith species diffusion velocity/;, with the correction for mass conservatigf, has
been assumed.

The divergence of the diffusive heat flgy, due to single species diffusion velocity
(second term in(119)), can be written as

Ns
O0-qy = _Zl{pri (Vi+VO)-[H ¢(Te)+ Hr i (Te)O- [pYi (Vi+ VO] ) (1.47)
Considering that
[ ¢i(Te) =1 9 (Tr)+ B (Tr) =Cp T ¢ (1.48)

equation[(1.47) can be written as:
Ns
O-av = Z{priCPi (Vi+ VOO ¢+ i (Te)O- [peYi (Vi+VO)] } (1.49)
i=

Substituting [(1.46),[(1]19) an@_(1)49) into equatibn (1.20), and taking into account
the correction due to the approximation in the species diffusion, it is finally found:

DTs Dp

Ns
o = o D~[kftrf}—m-{qD+qSGﬂ+i;a{f,im-J?GS (1.50)

NS NS
+®¢ — Qioss+ Pt ZlYi [fi—Cod ¢ - (Vi+V®) — lef}[f,iwi
= £

Ns
—rpHp— rlp+pr +_Z}[f,irp,i
i=

It has to be observed that the last term depending on the formation enthalpies changes
with temperature is erroneously neglected in many books and numerical codes. The
formation enthalpies are usually calculated at a reference temperature, neglecting the
dependence of the molecular force field with temperature.

Energy Equation in Terms of T; and C,

The aim of this subsection is to write equatign (1.50) in terms of temperature and
specific heat at constant volume. Itis observed that the sum of the two terms containing
the material derivative of temperature and pressure in](1.50) can be written as

DTs Dp DT; DT; Rg Dpf

PO B~ PO e L (1.51)

D
= pQ,——pf f—R9+pD uf+RngFp
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after having used the equation of stape<{ p¢RyT¢), the thermodynamic relatiddy, —
Rg = Cy, and the continuity equation
Substituting[(1.51) intd (1.50) leads to

DT

PG5 = —pO-ur+0- KT ¢| -0 [ap+q° +i§a{f,im-J?GS (1.52)

D NS NS
+prf—Rg + ®¢ — Qioss+ Pt ZYi [fi —Cp OT¢] - (Vi+ V) — Z\pf?[fjwi
= =

_rp

Dt

Ns
(Hp+RgTr) —Mp+Qpt + Zl}[f,irp,i
i=

Using equation[(1.44) the following relation is obtained

Ns 1 DY,

DRy
PrTf—= = prqu_ V_\:{E

Dt 2

When theexpression for the mass fraction material derivative forithehemi-
cal species is used in the above relation and it is substitutdd inl (1.52) together with
equation[(1.28), the following form for the energy equation is finally obtained

DT
prvE =

f SG S G
—p0-ug+ 0 [T | -0 [ap+q @]+i;}[f,im-ai 1.53)

Ns W
+®¢ — Qloss— Z[fi —Cp( ¢]- (hW —Di[X i+priV°)
i mix

N
s 1 W
TRTS = O DiX |
Ru fi;\Nl { (hWmix i |>
0. (priVC—f—JiSGS) +Pruy — rp,i}

Ns
— Zl}[f,i (Prux —Fpj) —MpHp—Mp+ Qps
i=

This form is useful in numerical codes because it contains the material derivafiye of
only. Itisimplemented in the HeaRT code which has been used for the validation of the

models proposed in this work, even though no reactive simulation has been performed.
The results that will be presented have been obtained neglecting the Dufour effect,
the heat loss, the kinetic energy dissipation during aerodynamic interaction between

phases and the dissipation function. The latters are usually small at the resolved scales,

when low Mach number conditions are considered.
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1.2 Dispersed phase model

The model that will be presented hereafter is based oMemsoscopic Formalisrthat
was first introduced byévrier et al.[23] and takes advantage from the results of the
Kinetic Theoryfor gases|[24]. The derivation of the resulting system of equations and
a proposed extension to the model are discussed in [15].

The model is made up of the conservation equations for the particle number, for
the dispersed phase mass, momentum, enthalpy and functional group mass fractions
Ym respectively.

0 0
anp + a_XjnpUpJ - 0 (154)
0 0
0 0 Opp
5t %PPpUp. + a—xjapppup,iup,j = % (Ur@pi —Upi) +Tui  (1.56)
0 0
0 0

The equations for the evolution of the functional groups are necessary in order to ex-
ploit detailed devolatilization models when coal combustion is studied, and to describe
the drying phase, during which the moisture adsorbed in the coal structure is released.
In the present work a recently developed devolatilization madel [25] has been imple-
mented in the HeaRT code. The drying and gasification/oxidation processes are instead
modeled after [26]. The following equations hold for the functional groups

Ng
=1

Ng
=1

meaning that the sum of the masses leaving (or entering) each functional must be
equal to the mass leaving the condensed phase. In addition ashes are considered inert
within the particle and the sum of ashes and of the transported functional groups mass
fractions must return unity.
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In the present model the density of the material in the dispersed phase is considered
constant and it is assumed to be he same for all the functional groups (and ashes). The
heat capacity of the single functional groups are assumed to be constant and evalueted
following the procedure described by Merrick[27]. When the assumption of constant
heat capacity is taken, it is trivial to obtain the particle temperature from the enthalpy
and iterative procedures are not necessary.

The particle relaxation timep appearing in the aerodynamic forces is defined by
the following correlation

_ 4ppd3
f(Rg) = 24(1+0.15xR&%)  Re <1000 (1.62)
f(Rg,) = 044  Re >1000 (1.63)

The heat exchange due to convection is modeled as follows

Mp = — (60p) 3 (Npr 2/ A ¢Nu(Tp — T) (1.64)
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1.3 Subgridscale closure model

In order for the equation systern (1l14)-(1.22) to be closed it is necessary to model
the terms accounting for SGS effects. A suitable turbulence model must be chosen
for this goal. In the present work the Fractal Model (FM)![28, 29,30, 31] has been
selected. FM is a linear algebraic eddy viscosity model which, despite its simplicity,
retains some important features in turbulent combust&nt "switches itself off" in
the laminar zones of the flovis) it takes into account the increase in dissipative scale
length, due to the high temperature present in the regions where combustion occurs;
c) it is able to give an estimate of the overall volume occupied by the reactive scales,
which are identified with the dissipative scales.

In the present work two main changes have been made to the model:

1. the model inputthe Reynolds numbdRe, at the filter cut off length scalA is
evaluated in a different way with respect to the original madel [31];

2. anisotropic model: an anisotropic version of the FM, slightly different from the
original Anisotropic Fractal Model (AFM)_[28] has been developed to keep into
account the differences in the three filter scales {3, As) in the three direc-
tions.

The basics that underlay the fractal modeling of turbulence and a brief description
of the FM are here recalled. A description of the changes made that led to the Large
eddy Fractal Model (LFM) adopted in this work follows.

It is nowadays well known [32] that fractal theory is able to resemble same sta-
tistical and topological features of turbulent flows. Studies [33] have demonstrated
that fractal theory is a useful tool in the interpretation of DNS and experimental data.
Other studies searched for a correlation between the experimental fractal dimension of
a turbulent flame and its propagation velocity![34,/35, 36].

The idea that is at the base of a fractal representation of the turbulent field is the
"cascade". The fractal theory relays on the conceptBaattal generationand self
similarity: an element of the fractal called "seed" generatesopies of itself, each
generatind\C copies on its turn. This generation is here considered a model for the tur-
bulent cascade in the inertial range, where kinetic energy is transfered from larger to-
wards smaller scales, mainly under the effect of the vortex stretching. In Kolmogorov’s
theory [1] of turbulence, the assumptions aagwithin the inertial range, energy flux
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occurs locally in frequency, that is between comparable sdajélse energy flux is not
depending on the considered frequency (scale invariance). This suggests that, when
the cascade is to be modelled by a fractal generation, each seed belonging to the scale
A1 generatedN® copies at the scal@,, slightly smaller tham\;. The self similar-

ity concept, even though it is not strictly the same, seems to be not so distant from
Kolmogorov’s scale invariance.

This description of the turbulent cascade leads to a representation where the space
is filled with eddies belonging to different scales. The iterative generation will stop at
the diffusive scale) given by
U _

Vi
whereuy, is thevelocity andvy, is the cinematic viscosity corresponding to the dissipa-

Re, = 1 (1.65)

tive scale.

It has already been pointed out that the fractal model is an algebraic linear eddy
viscosity model, which means that it is assumed possible to model the Reynolds stress
tensor as

TﬁGSZ Pr (Wil —Gilj) = —2uS; (1.66)

where theeddy viscosityy; is not function of the strain tens& but is an algebraic
function ofthe filtered variables. The aim of FM is to find an expressioryfor

Let A be the filter cut off lengthscale. As in Kolmogorov's theory the assumption
is made that no dissipation occurs within the inertial range

3 3
Ua Un

=N 1.67

A r]n (6)

whereN; is thenumber of dissipative scales produced in the generation process. Given
such a representation of the turbulent field, it can be written that

e U Nnba (1.68)

Following the procedure described In [29], where use is made of the fractal geometry
theory, itis finally found

=05t {né Rey (V—A> — 1 (1.69)
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wherecSC®Sc [0.1,0.6] is a calibration parameter and the ra(ié%) has beerintro-
duced in order to take into account the effects of viscosity enhancement due to the heat
release. The latter occurs in fact at the fine structures, where molecular mixing and
chemical reactions take place. It should be noted that, while approaching a wall (or
a laminar zone in generaRey — 0 andpy — 0 as expected without any need of wall
treatment.

Fractal theory also provides [30] the fractal dimendiyof the generated fractal

|
Dg=3—— " (1.70)

In [%+ﬂ— 1]

that canbe regarded as a measure of the ratio between the overall vé\tiaed the
part of it corresponding to the generated fractal. It is now possible to evaluate the
effective reactive volumg" as the one occupied by the dissipative scales

D3-3
Y =W, (%) (1.71)

where theratio of the number of dissipative scales over the total number of spgles
is empirically fitted by the function

0.36(% _ 1)

1+ 0.0469(% _ 1) =

YNy =1— (1.72)

Following theEddy Dissipation ConcegEDC) [37,38] the filtered source teremdue
to chemical reactions is obtained by

W=Yw (1.73)

wherew® is the source term as evaluated in the chosen reactor model that describes
the fine structures. Since no reactive validations have been performed in this work, the
possible reactor models, given their large variety, are not described here. Details on
the practical implementation of a Perfectly Stirred Reactor may be foundlin [31].

In the validations of FM[[28, 29, 30, 31] performed before the present work, the
filtered velocityus was used as the characteristic velocityof the filter cut off length-
scale in the evaluation d@e,.
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During the validation of the present work, when the Sommerfeld and Qiu [39] ex-
periment has been simulated by means of the HeaRT code, two different necessity
raised that pushed the author to apply the changes mentioned above: first, the perfor-
mance of FM for given conditions were not satisfactory, leading to the impossibility to
correctly reproduce the field topology, which is strongly influenced by it; second, since
the HeaRT code solves the flow equations on a structured cylindrical grid, it happens
to deal with grid cells that have very high aspect ratios. In the given conditions the
calculation made by means of the HeaRT code showed the tendency to diverge.

In the present model the Reynolds numBex, which is the parameter that rules
the fractal generation, is evaluated using an estimate of the amplitude of the mode
of lengthscale 2/of the signalprus, that will be addressed from now on gsu),,
instead ofpsUs. Note that the choice to ugpu) fluctuations instead afi may also
represent a link for acoustic-turbulence interactions to be modelled. In order to obtain
the estimate fofpu), a stencil of 5 or 4 points is used, depending on whether the
variable(pu) is collocated in the point where the estimate is to be calculated or not,
respectively. Consider the expansion

60— S Awsin( = s qn) 4o (1.74)
pu = nzl An h n :
Lx
N, = =
X A,

whereLy is thedomain dimension in th& direction. Equation[(1.74) is the part of
the Fourier series that can be sampled on a uniform grid with cells width eggal to
For n = 1 the highest frequency mode is obtained. In order to properly use the FM
one should be in the conditions to provide it wAl. The latter can be obtained by
applying some kind of high pass filter to theus signal. This filter must be compact
and fast. This is the first attempt to use such a procedure in conjunction with the FM
and the easiest solution has thus been used obtaining satisfactory results. More refined
filters could be used in the future thus improving the model performance.

Due to the staggered grid used by the gas solver (see section 2.1) two discrete filters
have been used. With reference to Figure 1.1, wiper), is to be obtained at the
point and thepru; variable is collocated at the cell center (Figlirel 1.1 a ) a 5 point
stencil filter is used. This is the case W@/uf’x component is being filtered in the
direction. Differently, when the variable to be filtered is collocated at the grid nodes
(Figure[1.1 b ), a 4 point stencil is used. A linear combination ofithe, values on
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Ui—2 Ui—-1 Ui Ui+1

Xi—2 Xi—1 Xi Xi+1 Xi+-2

Figure 1.1: Filter stencil fo(pu), estimation

the filterstencil around; is used. For a 4 point stencil it is

(prurj) Z Xp (pfuf J)'H) (1.75)

while for a 5 point stencil

foJ z Xp( PfU; J>I+p (1.76)

is used, where is the cell index in the filter directionj, is the direction of the;us
considered component ampds the point index on the filter stencil. The coefficierfs
must satisfy the condition

Y Xp=0 (1.77)
p

in order to return no fluctuations when a constant signal is filtered. When the expansion
(L.72) is substituted intd (1.¥5) dr (1176) the following expression is obtained

(pfufJ ! Z prAn {sm (—+(pn> +cn] (1.78)
When & point stencil and uniform grid are considered, the substituti(;:(n:oil1 (-1,1,-1.1)

in (1.78 and some algebra yields

. Ny
(pfuf,j)I = A sing; + Z An [cos%cos(%— +(pn> sm:] (2.79)
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It can be seen in equation (1179) that the amplitude of the first model(nwill be
dumped by the sin function of its phagg the mode foin = 2 will be cancelled while

the other modes will be dumped because of the multiplication by 3 sin/cos functions.
Thus, whenp; = +7 equation[(I.7preturns a value very close #, while for @, = ki,

k being an integer, equatidn (1]179) returns a dumped value of the amplitude of the lower
frequency modes.

A similar result is obtained by selecting= 1—16(1,—4,6,—4,1) for the 5 point
stencil. In this case no cancellation of the mode rioe 2 is obtained but higher
dumping for the modes for greateis granted with respect to the 4 point stencil case.

For non uniform grid, if the grid stretching factéfxiil < 1.1 the erroiintroduced in
the [1.79) is small and well within the model uncertainty and no additional corrections
are taken.

Assuming that all the three cut off lengthscales are within the inertial range, un-
der the hypothesis of homogeneous isotropic turbulence, it is possible to rescale the
three filtered values obtained for each component by filtering in the three directions,
on a unique lengthscale. In the present work the intermediate filter scale has been cho-
sen, with the exception of walls treatment. Thus, if @X\y < Az), by applying the
conservation of the kinetic energy on the turbulent cascade it is possible to write

3

A A
(pfuf,J)x,Aﬁ(A—i) (PFUL)ya, (Pfuf,j)z,Ay:<A—Z) (Prufj),,, (1.80)

which meanghat for the " component of thépsuy), vector three possible values

Wi

have been obtained, depending on the direction where the high pass filter has been
applied. The average of these values is taken in order to limit the error due to the
signal phase; uncertainty

1
(Prut i) =5 | (PrULi) s, + (PrUL) 0, + (PrUL ), | (1.81)

Another errorwhose effects are limited with this procedure is the extrapolation from
or to lengthscales that are outside the inertial range. This may sometimes occur locally
in the domain.

A slightly different treatment is used in the wall boundary condition, since in that
region the isotropic hypothesis is no longer valid. The filter scale on which fluctuations
are rescaled there, is no longer the intermediate grid step in the three directions but the
boundary cell width in the direction normal to the wall.
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After the three components are evaluated, the modul@mﬁf)A is simply ob-

tained as
1
(prus), = [(pfuf,x)i-l- (prf,y)i-l- (prf,z)ﬂ : (1.82)
The Renolds number at the cut off lengthsc&e, that is used in[(1.69) is then ob-
tained as
(Pru) A
Rey= —*%5— 1.83
m™ (1.83)

whereA is thelengthscale over which the fluctuations have been rescaled.

A second problem that occurred in the simulation of Sommerfeld and Qiu test case
[39] is due to the fact that the HeaRT code, which has been used for the validation of
the models, solves the flow equations on a structured cylindrical grid. This constraint
brought to have a computational grid presenting cells with aspect ratios, defined as the
ratio between cell sizes on different directions, 10 or higher. Under these conditions the
numerical scheme implemented in the HeaRT code (see secfion 2.1) showed a tendency
to diverge. In order to perform the simulation the SGS model has been modified in
order to add dissipation in the direction where the filter scale is greater than the one
on which the fluctuations have been actually measured. The SGS model, as given in
equation[(1.66), has thus been modified as

ou; ou; 2 oy

ses_ _ (,, .9ui ouj\ | 2 ks

T (UL] ox; + M, % ) + 3Ut,k ok Jij (1.84)
and equation§l.69) and[(1.83) as
b = 05651 {né Rehj (:%) — 1} (1.85)
n
(Prur) 4

Re, = -~ /A% 1.86
J Ha (1.80)

It shouldbe pointed out here that this anisotropic formulation has not been thought for
modelling reasons, meaning that it does not take into account any anisotropy in the
distribution of the turbulent structures.

Finally, the calibration constamt>®Schanges its meaning with respect to the pre-
vious formulation of FM([[29, 30]. While it is there supposed to account for the uncer-
tainties on the cut off filtering, and can thus be tuned by a Germano procédure [40], in
the present version of FM this uncertainties have been addressed, and the natural value
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of 05CSis therefore 1. Higher values could be necessary to stabilize the numerical
scheme, but they should be regarded as artificial viscosity rather than a model for SGS
effects.

As to the models for the other SGS contribution§{3and g7 they will be
modelled in analogy with the Reynolds stress term

Ys o OX
SGS _ _ 4. Sps. 7S
Js] Pf sttv 3% (1.87)
0T¢
SGS
G = —kjo— (1.88)
] ]an
where
D, = (l+—Ltj)Ds
M, j
kj = (1+—)k
’ W



Chapter 2

Numerical approach

2.1 Numerical scheme for the gas phase equations

The system of equatioris (1]114)-(1.22) that govern the evolution of the gas phase filtered
variables is numerically solved by means of the HeaRT code developed in ENEA. The
gas phase solver is based on a centered Il order finite difference scheme on a staggered
cylindrical non uniform grid. The idea is to define a different grid for each velocity
component as shown in two dimensions in Figuré 2.1. Each velocity component is
staggered in space by half grid width with respect to the scalar varighles,T and

Y;. Consider (Figure 212) an hexaedral cell, whose faces lay on a coordinate plane. The
velocity vectorial component in thg" direction

Ut j = Ut jAj = Ut ji] (2.1)

normal to the cell face is collocated at the face centei_In (2,19 the versor normal
to the cell surface in the outcoming direction Wﬁi]eis the jt" coordinate direction
versor. Finally, scalar variables are collocated at the cell center.

This discretization technique leads to a higher precision and to a more robust dis-
cretization of the time-dependent continuity equation, for which no interpolations are
performed.

In order to simplify the notation let the following differencg,(dand interpolation
(U*) operators be defined as

U1/2j—U-1/2)] U2 —Uij1y2

Ax , Oy(uij) = Ay (2.2)

O (Ui j) =

37
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Figure 2.1: Left) Collocated grid; Right) Staggered grid.

Figure 2.2: Example of a cylindrical staggered grid.

and
_ Uip1/2j+Ui—1/2j v  Uijr12+Uij-1/2
U:j = 5 U= 5 : (2.3)
The difference and interpolation operators produce a second order accurate estimate

of the derivatives of the variables and of the variables themselves at the center of the
operator support. When the equations are generalized on nonuniform grids, the inter-
polation and differencing operators are modified as

_ Ui+1 — Ui
U\ 12 =Clis1+(1—C)Ui, dx(U)it1/2= h, (2.4)
where
1 for velocity component
Ci ZX.,X. / _ g (2.5)
xal S-1_ for scalarvariables
+1—Xi-1

andx; is the coordinate in th& direction where the velocity component in the same
direction, for the'" grid cell, is collocated.
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When this staggered shifting is properly taken into account, this notation can be
used to write the discrete equations in an index-free form, with the convention that
any two quantities that are added or multiplied must be at the same location on the
space grid. The expression of the discretized governing equations will be simplified
by introducing the intermediate varialgefor the momentum per unit volume, which
is defined according to:

gi =Pyuri, Uri=g/py- (2.6)
With this notation the governing set of equations discretized on a cylindrical grid
(with r the radial directionx the axial direction and the azimuthal direction) takes
the following form
continuity:

1 1
O(P) +82(9z) + -6 (rgr) + B9 (9s) = —Tp

momentum:

1 1 Upz—U
61(9z) = O(fz2) + - (Vfar) + -85 (fz9) —[pUpz+ApPp (F’ZT—“>
p

1 1 Too Upr — U
5(ar) :52(fr2)+F5r(rfrr)+F&s(frs)—%—I‘pup,mtappp (—wrp f’r)
)

1 1 f Upg — U
8:(05) = x(foz) + -8 (rfor) + =85 (fo) %—rpup,ﬁappp(_pﬁ w)
p

1 .
foz = 2UB(U7Z) — 30] — 67z — p

1
frr = 28 (s ) — ée] —g'ur, —p

1 Urf,r 1  —
fgg = ZP-[Faﬁ(Uf,S) + - :_%@] —0Os Ufs — P

fzr = T2 [82(usr) + & (U 2)] — Or U 7
fry =2 [82(Ut r) + 8 (Ut 2)] — 07" Ur

1 Uts'
I_i_rs[5r(uf,s)+;58(uf,r)_ g5
W

—0y Usr
—9 1 Urg' .
(8 (ur ) + 289 (ur ) — == G Ur s’

f

rd —
fﬁr =

L 1 L,
f9 =TF [O(Us )+ F5.9(Uf,z)] — 057077

—9 1 z

foz =2 [O(Uss) + Fés(uf,z)] ~ % Ur s
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generic scalar transport:
1 1
& (PP) =82(0z) + O (rar) + B9 (09 + pW

Oz = PO“0(¢)— Qz(_PZ

O = Pa' & ()~ or @
_3

Gs = P08y (@) — Gy @

wherew is thegeneric source term for the transported scalar.

2.1.1 Treatment of variables on the axis

All the quantities are staggered with respect to the centerline in the radial direction (i.e.
they lie atA/2 from the axis), excepis r, that is collocated on the axis. The values of
us r at the centerline are obtained averaging the valuesg ohear the axis as described
below:

1
usr(r=0,9) = é[UfJ(AI’,S) + Ug r (Ar, 9 +10)]. (2.7)

The angular distribution afs , on the point near the axis of symmetry does not ensure
a single value ofi ; on the axis.

2.1.2 Metric correction
When discrete volumes are considered, instead of infinitesimal ones, a correction for

the derivatives in azimuthal direction is needed, that is

U jktd = U k-1
2sinfd

s (Uij k) = (2.8)

In addition,when the azimuthal component of the velocity is interpolated at the cell
center the following correction is used

o eeliikes Yo kg A9 2.9)
foli,jk 2 T2 '
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2.2 Dispersed phase

The equation systern (1.%54-1158) will be numerically solved on the same computational
grid used for the gas phase scalar variables, by means of a finite volume technique (or
Godunov’'s method). Let the vector of the average variables defined by averaging

the variable vectou over the control volume

— 1
U”k - m A{VrUdrV (210)
and theaverage source terfi
By =t Hd 7 (2.11)
K= Y AZAAS Sy '

be approximatedly the value of the functiog!) at thecell center. When this defini-
tions are substituted into the equations (I.5441.58) under integral form and the surface
fluxes are approximated with first order accurate values, the equation system can be

written as
al]jk 1
o = iamms | |(FerGey— (FamrGyy a9 (212)

+ [(rFr —rGr)j 1~ (Fr —rGr)j_%} AzND
+ [(Fa —GB)kJr% — (Fs —Gﬁ)k,%} ArAz }
—H:|ijk—|—O(A2)

In order for the method to be well defined it is necessary to select:

1. areconstruction algorithm that enables to find the flux values at the cell bound-

aries;
2. atime evolution algorithm.

The time evolution scheme is the same for both phases and will be described in

section [(2.B).
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2.2.1 Reconstruction method

The reconstruction algorithm will be here presented for a 1-D scheme, for reasons
of notation simplicity, without any lost in generality. As already mentioned, a linear
reconstruction around the averaged values of the conserved variables is taken. The av-
eraged values are considered to be equal to the local value at the cell center as shown in
Figure[2.8. In the case where the uncorrelated motion is neglected it can be shown [41]

7
e ]| =

[ e | R e 1)

Figure 2.3: Linear reconstruction of the variables within the cell

thatthe system of equations for the dispersed phase has three coincident eigenvalues
equal to the dispersed phase velocity. An upwind scheme has thus been selected for
the reconstruction phase. The numerical scheme should not produce oscillation in the
presence of dispersed phase fronts,the cells that divide regions where particles are
present from those where particle are absent. If the numerical scheme allowed the solu-
tion for particle number density, or volumetric fraction, to present oscillations in
this cells, it could be possible for this variables to become negative. This is unphysical
and would lead the calculation to diverge. The reconstruction phase for the dispersed
phase mass flux is thus very important in order to prevent spurious oscillation to occur
in the front regions.

For theit" direction, the reconstruction phase of the fluxes at the pginvhere
the interface between celjsandj + 1 is collocated, can be finally summarized as

1. evaluate the slopes of the mass flux varighlgppup i) normal to the considered
interface, for both celf andj +1;

2. evaluate the mass flux for both the lefppUpi)- and the right sidéa pppupi)®
of the interface (see Figure 2.4);
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3. solve the Riemann problem at the interface;

4. depending on the solution of the Riemann problem evaluate the slope for all the
other variables in the cell placed upwind with respect to the considered interface
(see Figuré& 215) ;

5. from the average value in the upwind cell reconstruct the variable value at the

interface.
fj = (apu)p,j
fi_1
) \IJ\
fL
] [ ]
f.
fR—o— 2
J
fita
l | | |
{ { { \
Xj-2 Xj-1 Xj Xj+1 Xj+2
Figure 2.4: Mass flux reconstruction at the interface
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Figure 2.5: Upwind reconstruction at the interface for the geneddable

For both point§1l andl 4 the evaluation of the variable siBpen the j" cell is
made, accordingly with the ENO (Essentially Non-Oscillatory) scheme theory, by ap-
plying a limiter in order to prevent oscillations and keep the calculation stable. The
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minmodlimiter has been adopted here. In the calculation of the slope of the mass flux
component normal to the considered interface a modified version (Algorithm 2.2.1)
of the classianinmodlimiter has been used, while for the other variables the generic
algorithm (Algorithm[2.2.P) is adopted. Examples of thexmodlimiter action are

shown in Figured(214) and (2.5).

Algorithm 2.2.1 Modified MinmodAlgorithm for mass flux variables
if fj =0then

Slj=0
else

evaluateSk = 2%

evaluated| = 22:—2:2

if SkR-9 <O0then
Slj=0

else if SR| < |Sk | then
Slj = Sk

else
Slj = Sk

end if

Af =7 (Xj+1—Xj-1) Sl
if f2—Af2<0then
Slj=0
endif
end if

Due to the piecewise reconstruction of the solution, discontinuitiesawde at the
cell boundaries. It is thus necessary to evaluate the associated Riemann problem, in
order to evaluate the fluxésandG.

Riemann soher for the correlated motion

After the reconstruction phase, two different values for the mass flpppfap ) at the
generic interface in thi" direction will be available (see Figure 2.4). As already said

it is very important to well predict the solution of this Riemann problem to keep the
numerical algorithm stable during the calculation. Besides the value of the mass flux
that will be used in the evolution stefp, the Riemann solver must return the upwind
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Algorithm 2.2.2 GenericMinmodAlgorithm

evaluateSkg = ot fi

Xj+1=Xj-1
evaluateS| = 2%
if Sk-9 <0then
Slj=0
else if|Skr| < |Sk| then
Slj = Sk
else
Slj = Sk
end if

directiondir that will be used in the reconstruction of the other variables. The Riemann
solver adopted in this work is presented in Algorithm 2.2.3. It is worth to note here that

it returns value equal to zero for the mass flux when the values reconstructed from both
sides of the interface are exiting from the interface itself. On the contrary, when both
values are entering the interface, their sum is taken as a solution. When none of these
two cases occurs, the upwind flux is selected as a solution of the Riemann problem.

Algorithm 2.2.3 Riemann soler for the correlated motion
dir < left
fi=0
if fi > 0then
if fi-- fX<Othen
_fL_ fR
fj=fy+f;
end if
elseif f} < Othen
end if
if f; <Othen
dir <—right

end if

Particular attention should be paid to the condition when bottefilace entering
the interface. This is a shock since both the characteristics of the same family are cross-
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ing each other at the interface. The solution adopted here, has its physical justification
in the assumption of dilute conditions. Since the particles coming from the two control
volumes divided by the interface, and crossing there one another’s trajectory, will not
collide, the net mass flux will actually be the difference in module (their sum in fact)
of the two reconstructed values. Nevertheless this kind of solution, which conserves
the effective mass of the system, imply a dissipation of kinetic energy. The Riemann
solver is thus non-conservative and only when the uncorrelated motion will be taken
into account it will be possible to address this kind of problem.

2.3 Time evolution scheme

In the time evolution step, a numerical scheme is used in order to advance the solution
from the timet" to the timet"*1. In the present work a one-step explicit Runge-
Kutta Il order accurate scheme has been used. A generic Runge-Kutta scheme can be
expressed by

S
Ul =u"+hSY bk n=0,.,N—1
2,0k (2.13)

u” = u(to)

where

h= tl’]+1 _tl’]

i1
k'=F | th+cih, u”+hZaijk? i=1,..,s
=1

ajj, Ci, bi:=coefficients to be determined;

s:=substeps in the Runge-Kutta scheme.

In order to obtain a lll order accurate schesie 3 must be chosen. In the scheme
here adopted [42] the coefficients are set to
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c2=c3=0

bi1=bp=5 bz=

wInNy

ol

1
a1=1 ag1=az=7.

In orderto ensure the calculation stability two conditions must be respected: the con-
dition on theCourant-Friedricks-Lewy{CFL) condition and the condition on thén
NeumanmumberV NN for the stability of transport-diffusion systems. TGE&L (or
Couran) number is defined as

CFL:)\'}"AXAA—)EJ_ (2.14)
Where)\'}"AX is the maximum local eigenvalue in tH& direction. The physical mean-
ing of this condition can be explained with reference to Figure BL = 1 implies
thatAt is the time by which the signal entering the control volume crosses it reach-
ing the opposite interfacedt is therefore the time by which the flux estimate should
be updated, unless the initial estimate already takes into account the outcoming flux
variation.

,,,,,,,,,,,,,,,,,,,,,,,,,

j-1/2 j j+1/2

Figure 2.6:Physical interpretation of th@éF L condition

Thenon-linear stability of this scheme, in conjunction with a ENO reconstruction
is reported in[[42] to be given by the conditi@fL < 1. Nevertheless, the application
of Il order R-K schemes, in conjunction with the staggered discretization described
in section [(2.11), to compressible flow LES is reported.in [43] to be performed using
CFL = 0.1 in order to limit the effects of the truncation error. For conventional ap-
plications, the module of the system maximum eigenvalue will be much greater for
the gas phase (depending on the speed of sound) than for the dispersed phase. The
satisfaction of th€F L condition will thus be evaluated for the gas phase only.
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The condition on th& NN defined as

At

e (2.15)

VNN=vV

for a Forward-Time-Centered-Space (FTCS) it is reported t& BN < 0.5 proven
that a condition for the cell Reynolds numbRe, is satisfied. The complete analysis

of the FTCS scheme stability is reported(inl[44].



Chapter 3
Model validation

In the present chapter the activity on the validation of the two-phase flow model will be
presented and the results associated to the proposed numerical approach will be shown.

It must be pointed out here that the equation system](1.54-1.58) is ready for reactive
test cases once that a mass exchange model between phases is provided, even though
a non reacting test case is here presented. As will be cleared in the following sections
the accuracy granted by the present model justifies the adoption of a LES technique.
In fact, the model for the dispersed phase that has been tested up to this point is very
similar to those adopted in other codes (CERFACS AVBP) with different numerical
strategies. The main difference, under a modelling point of view, is that a SGS model
is used there for the dispersed phase which here has been considered unjustified. It
can be shown that the Stokes number based on SGS turbulent characteristic timescale
approches unity for very small particles (few microns). The results from the validation
performed seem to confirm the assumption on SGS modelling made in this work to be
correct.

The Sommerfeld and Qiu test case![39] has been selected as a test case since it
presents a sufficiently detailed database to assess that:

1. the numerical implementation for the transport model is robust and reliable;

2. the assumption that no SGS modelling is needed for particle relaxation time
based on turbulence characteristic tirfge>> 1 is verified;

49
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3.1 Sommerfeld and Qiu experiment

In the Sommerfeld and Qiu [39, 45] experiment a particle laden flow is obtained by
injecting small (20- 80 um) glass particles in a confined swirled flow. In Figlre 3.1
the experimental set-up can be seen. The injection system composes of a cylindrical
duct and of an annular duct coaxial to the first one. Air and particles flow through the
cylindrical duct to the test chamber while from the annular duct a swirled air flow is
introduced in the test section. The swirl number &70.At the end of the test chamber

an expansion chamber is present.

Measures of both air and particle velocities are taken on 8 different radial planes,
from 3 mm from the injection plane down to 315 mm from it. Data for both phases
mean and RMS velocities and their radial distributions are taken. Different classes of
particle size are considered.

There are different reasons that suggested the choice of this experiment for the
validation of the models and numerics developed in this waykhere is a large variety
of numerical publications based onli} the extensive database of measures suits well
to the validation objectives outlined at the beginning of this chamdesimilar flow
configurations can be found in pulverized coal burners and the patrticle size is within
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Figure 3.1: Sommerfeld and Qiu experimental set-up. (Froni_rdj [45
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the range typically used for these applications, though the mean diameter is smaller
(~ 45um) here compared to the one (00 200um) usually adopted for power plant
burners.

The test case conditions are summarized in the following table while in Higdre 3.2
the computational domain is reproduced. The test chambe7@&30n long while
the inlet duct length is @27 m. The expansion chamber is 0.464 m long and has a
diameteDg = 0.630 m. The other radial dimensions are those reported in Higure 3.1

Air flow
Mass flav rate of the primary jeM¢1 (g/s) 9.9
Mass flow rate of the secondary pdt2 (g/s) 38.3
Inlet Reynolds number (witB3 = 64 mm) 52400
Swirl number 0.47
Particle phase

Particle mass flow ratil, (9/s) 0.34

Particle loading in the primary jet 0.034
Particle properties

Particle mean diameterify 45

Particle material density (kg/ 2500

Table 3.1: Flow conditions and particle properties for the Sommerfeld@méxperiment

Figure 3.2: Computational domain (left) and a detail of the inlet (right)
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3.1.1 Computational grid

The computational grid is structured and cylindrical. It is composed by 4 blocks: two
for the inlet ducts, one for the test chamber and one for the expansion chamber. All
these blocks present 64 azimuthal planes. In Figurde 3.3 the overall grid and the grid
distribution in radial planes for the different blocks is presented. In Table 3.2 the grid
dimensions with minimum and maximum step size for each direction are reported. As
to the axial distribution, a uniform step siag = 0.001 m is adopted in the inlet ducts

and in the first part of the test chamber. Affrer 0.2 m (z= 0 m is the section where

the inlet flow enters the test chamber) the grid step size is gradually increased. At the
last experimental station £0.315 m) itisAz= 0.0035 m. The distribution of the grid

(a) Overall computational grid

(c) Computational grid in the inlet zone (d) Computational grid in the expansion chamber

Figure 3.3:Computational grid

steps in the radial direction starts witih = 0.0007 m close to the axis and it decreases
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down toAr = 0.0002 m before the inner duct wall. It is then kept constant through
the entire annular duct and only for> D3 (see Figuré_3]1) the step size is gradually
increased up tér = 0.002 m before being decreased again down 69064 m at the
test chamber walls.

Block Nz X Nr x Ng AZmin[m]  Azma{m]  Armin[m]  Armad{m]
Inner inlet duct (128 38x 64) 0.001 0.001 0.0002 0.0007
Annular inlet duct (12852 x 64) 0.001 0.001 0.0002 0.0002
Test chamber (306 158x 64)  0.001 0.011 0.0002 0.002

Expansion chamber (32192x 64) 0.011 0.02 0.0002 0.02

Table 3.2: Grid characteristics for each block

3.1.2 Boundaryconditions

Appropriate boundary conditions must be specified for both phases at the inlet, at the
outlet and at the walls.

Inlet boundary conditions

At the inlet section the momentum, temperature and species mass fractions are speci-
fied for the gas phase.

The following law, reproducing a developed turbulent mean profile in a cylindrical
duct, is imposed for the internal duct

prus,(r) = O
pruss(r) = 0
Pruco(r) = (prus)"™ <DlD—12r> ¥ -
(prue2)"™ = Mf,l(zrfzj(Lntl))zngl)
AL '?T

with nt = 8. At the inlet of the annular duct the following laws are imposed in order to
grant the right swirl number at the test chamber inlet.
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pruse(r) = 0
~ Mi2
PiUsz(r) = A2
pfgfoze( >tan(2i)r r <Ruy=2-0003
prurg(r) = (3.2)
PrUf z(Ru _D3 RM> r > Ry
2 N2
A2 _ D3;Dzn

It canbe seen how a constant axial momentum is imposed while two distributions linear
with the radius are used for the azimuthal component. Finally, for the temperature and
the mixture fractions the following values are imposed

Ti = 300K
Yo, = 0.2
Yy, = 08

In order to reproduce a turbulent inlet, a technidque [46] to generate synthetic turbulence
inflow with coherence in both space and time has been implemented in the HeaRT
code.

As to the dispersed phase, due to the upwind nature of the equations (no character-
istics coming from the domain) all the variables must be imposed. Particles enter the
inlet duct at the same velocity and temperature of the gas. The volumetric fragtion
is obtained from the mass fluM,,

Mp, 4

Op= — 3.3
® ppUp, D 83
and theparticle number from the particle diamethy
_ 6ap
Np = @ (3.4)

In the present validation a monodispersed class of particlesayith 45 pm is simu-
lated. Finally a particle temperature of 300 K is imposed and null gradient for turbulent
viscosity is also set.

Outlet boundary conditions

Partially non-reflecting boundary conditions based on the characteristic waves [47] are
applied at the outflow for the gas phase. The asymptotic pressure is set to 1 atm. Null
gradient for shear viscous stresses are set as suggested in [48].
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For the dispersed phase it was sufficient tolget= 0 in a ghost cell. The values
of the other variables are linearly extrapolated from inside the domain In this way,
upwind values coming from the inside are always taken in the reconstruction of the
exiting fluxes.

Walls

As to gas phase, adiabatic no-slip conditions are adopted for this calculation. Tur-
bulent viscosities values are extrapolated from inside the domain and only when this
extrapolation returns a negative value they are set to zero.

Due to the absence of the uncorrelated motion [15] in the model, the dispersed
phase has been treated at the walls in the same way as at the outlet. This choice was
made in order to avoid a progressive accumulation of particles at the corners. Itis in
fact impossible to reproduce the effect of particles hitting the walls and rebounding off
without taking into account the uncorrelated motion.

3.1.3 Code settings

In order to keep the calculation stable it was necessary to add artificial viscosity by
increasing the value of the SGS calibration consta¥cS= 2 has thus been set for

the present calculation. This choice, due to the poor resolution of the computational
grid in the azimuthal direction will obviously have an impact on the calculation qual-
ity. However, this problem is grid depending and does not subtract generality to the
conclusions of the present work. The reflection coefficient for the outlet boundary
conditionsk°"t has been set to 0.1. As to the stability coefficients (see séctibn 2.3) the
following constraints have been used

CFL=0.25 VNN=0.1

3.2 Results

In the following sections the results for the gas and the dispersed phase will be pre-
sented.
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Figure 3.4: Gas phase velocity field structure

3.2.1 Gagphase

In Figure[3.4 the field structure of the gas phase momentum is presented for a given
instant, for the test section zone. A radial plane is shown where the streamlines are
drawn. The streamlines are in each point parallel to the gas phase velocity component
laying on the plane. The momentum modipes| of the gas phase is also shown by
means of contour levels. Since the gas density is almost constant, showing oscillations
on the fourth significant digit around a mean valugef= 1.165 kg/n¥, the contour
plots of the momentum closely resemble those of the gas velocity.

The field structure is typical of swirled combustors. Two recirculating zones are
present just aside from the injection zone, and extends up~t®.085 m, wherez
is the distance from the plane where the injection ducts enter the test chamber. A
stagnation point is present at the center of the domairz #010.09 m, after which a
great toroidal recirculation zone extends for more than 20 cm in the axial direction. The
instantaneous field shown in Figurel3.4 is characterized by a considerable asymmetry
and by the presence of many small structures that only through a LES technique can
be captured.

If attention is paid to the single components of the momentum, it is more difficult
to see the smallest structures but the overall behavior of the momentum field is clearer.
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In Figure[3.5(d) the axial momentum is presented while the azimuthal momentum is
shown in Figuré 3.5(b). From Figure 3.5(a) it is clear how the mass flux, due to the
swirled flow entering from the annular duct, is mainly constrained in the outer part
of the test chamber. The complexity of the flow structure is instead well reproduced
in Figure[3.5(1), where it can be seen how the azimuthal momentum is redistributed
through the all domain, due to turbulence effects. If the attention is focused in par-
ticular on the central recirculation zone, it can be seen how the fluctuations in the
azimuthal momentum are larger than those in the axial direction. Finally, in order to
give the best idea of the three-dimensional structure of the flow field, the module of the
gas phase momentum over an axial and a radial plane normal to the axis is presented in
Figure[3.6(8)-Figure 3.6(d). Four different positions for the radial plane are considered
from z= 45 mm toz= 345 mm.

As already mentioned above, only small fluctuations are present in the gas phase
density. There are no large structures to be seen in Figure 3.7, where the distribution
of this variable is presented. The texture-like appearance of the density distribution
could be due to the spherical waves that are released from the injection plane. This is

Sz [lg,fts m"2) et (kg (s m*2))
.25.0 ' 18.0
18.8 <.00
12,5 .0.00
625 / -2.00
| fl )
000 & l -18.0

() (b)

Figure3.5: Gas phase momentum field. Axial (a) and azimuthal (b) momentum
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22.5 22.5

() (d)

Figure3.6: Instantaneous field of the momentum moduleFour positions for the plane normal to the
axis are considered: (a)= 45 mm; (b)z= 90 mm; (c)z= 150 mm; (d)z= 345 mm

due to the vortex shedding present at both sides of the annular duct entrance in the test
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Figure 3.8:Instantaneous field of the eddy viscositigs; (a), 1, (b), .6 (C)
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chamber. Spherical waves are then reflected at the walls and reflected waves interact
with the released ones.

The temperature and pressure distributions are similar to the density one and do
not add anything in the result analysis. They are therefore omitted here.

In Figureq 3.8(&)-3.8(k) the distribution of the eddy viscosities applied to the prin-
cipal directions (zr and?d respectively) are presented. In Fig{ire 38(a) it has been
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chosen to use a wireframe representation in order to give an idea of the zone where
the computing grid gets coarser. The step size-directionAz is gradually increased
afterz=0.15 m fromAz =1 mm toAz= 5.5 mm, whileAr has its maximum around

r = 0.08 m. By comparing Figurés 3.8(a) dnd 3.5(a) it can be seen how the higher val-
ues forp ; can be found in the mixing layer of the annular flow, close to the injection

plane, and after the central recirculation zone. Although the velocity fluctuations are
much greater close to the injection plane than in the second region, the modelled eddy
viscosities are comparable in the two zones. The reason may be searched in the linear
dependence of the eddy viscosities on the different filter scales of the directions they
are applied to, as described in in secfiod 1.3. At the upper part of the figusdfive

times greater then in the lower part, which counteracts the decrease of the amplitude of
the velocity fluctuations. Another thing that can be observed in the upper part of Fig-
ure[3.8(@) is the fact that the value|gf; is greater where the grid in thredirection is

more refined. This may be an evidence of the fact that the filter scale alsogitside

the inertial range. In this region, the filter scAleis the intermediate one. The fluctua-
tions extracted from the high pass filters along directioasdd will be rescaled using

the equationd (1.80) ofz. Nevertheless, it must be remembered that these equations
relay on the hypothesis of being inside the inertial range of turbulence. If one tries and
rescales the fluctuations measured outside the inertial range on a lengthscale inside of
it, he will finally get a fluctuation much smaller than it should be. On the contrary, if
one measures a velocity fluctuation inside the inertial range and[uses (1.80) to rescale
it on a lengthscale outside of this range, he will obtain a great overestimation of this
fluctuation.

It has already been pointed out that the greatest velocity fluctuations can be found
in the mixing layer of the annular duct flow. Botlp, and g have their maximum
values in this region. Sinc#r andAd are greater thaAz there, the highest values of
Her andpg 5 are greater than the one f, and they present overall greater values in
the regions where the respective filter lengthscales are larger.

Validation against the experimental data

In this section the comparison between the experimental data and the results computed
in the present work will be presented. Data from the computation have been sampled
over an interval ofAt = 0.04 s, which represents approximately two times the revolu-
tion period of the lateral recirculation zones.
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In Figure[3.9 the experimental data and the computed solution are presented for the
plane az= 3 mm, thus very close to the injection plane. Solid lines refer to the present
work while dashed lines are taken from [49] and have been obtained by means of the
AVBP code for comparison. In Figures 3.9(a) and 3]9(c) it can be recognized how both
mean values and fluctuating velocities are well reproduced. The radial positions of

local maximum are perfectly caught, the magnitudes are in very good agreement with
the experiments. The same cannot be said for the radial component. Both the shape
and the level of the RMS are not well predicted. This can be due to the poor resolution
adopted in front of the bluff body separating the inner and outer duct. In fact, since
Az =3 mm only 3 grid points are present before the plane where the measures are
taken and it will not be possible to reconstruct smaller structures in that zone.

In Figure[3.10 the computed solution is compared to the experimental data-for
52 mm. In Figuré 3.10(f) it can be seen how both the mean and RMS axial velocities
are very well reproduced by the HeaRT code. On the contrary, for both radial and
tangential components, the RMS velocities are very well predicted at all the radial
positions with a slight overprediction for the tengential component.

At z= 85 mm the mean radial component is well predicted close to the center of
the domain and in the outer part. The axial component presents an underprediction in
the central part. This may be an effect of the spourious particle accumulation in the
stagnation region. The simulation has been run for nearly 20M iterations in order to
test different strategies and this eventually led to this problem. Once the code has been
developed this is not expected to happen under normal conditions.

In Figured 3.12-3.15 the comparison between experimental and computed data for
planes ar =112 mm,z= 155 mm,z= 195 mm and= 315 mm. The mean velocities
are well predicted. The overall level of the fluctuations is generally well reproduced.
Local underpredictions by a 30%50% appear expecially moving far away from the
injection zone, where the grid step in the axial direction becomes larger.

In order to improve the solution, the calculation should be performed on more
regular grid, expecially in the azimuthal direction. The constraint to use structured
cylindrical grids requested by the HeaRT code makes it unfeasible. Studies are on the
way in ENEA to release at least one of the two constraints (structured or cylindrical).
Only when these improvements will be available it will be possible to try and obtain
better results.
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Figure3.9: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z=3 mm. Symbols are taken from experiments. Lines are computed
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Figure3.10: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z=52 mm. Symbols are taken from experiments. Lines are computed
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Figure3.11: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 85 mm. Symbols are taken from experiments. Lines are computed
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Figure3.12: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 112 mm. Symbols are taken from experiments. Lines are computed
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Figure3.13: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 155 mm. Symbols are taken from experiments. Lines are computed
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Figure3.14: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 195 mm. Symbols are taken from experiments. Lines are computed
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Figure3.15: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 315 mm. Symbols are taken from experiments. Lines are computed
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3.2.2 Dispersed phase

In this section the results obtained for the dispersed phase will be analyzed.

In Figure[3.16 the distribution of the dispersed phase volumetric fraction is shown.

It can be seen how the dispersed phase has the tendency to concentrate in thin layers.
This is due to the nature of the equations that have been integrated (see System (1.54)-
(1.58)). When the trajectories of two groups of particles cross each other, in this model,
they will have to proceed with the same velocity and this will lead to an accumulation
process. The latter is sketched in Figlre 8.17 a). This process is unphysical when
dilute conditions are considered since there is no impact among particles. There is
thus no reason for momentum to be transferred from a particle parcel to another. In
addition, the equation systein (1.54)-(1.58) does not conservate the kinetic energy of
the dispersed phase, as it should, when the phase coupling is removed.

What is expected to happen when a particle crosses other particles trajectories un-
der dilute conditions is sketched in Figlire 3.17 b) for the case of a fast particle reaching
a slower patrticle front. The fast particle will surpass the slower ones without momen-
tum exchange. If the aerodynamics effects are neglected, both momentum and kinetic
energy will be conserved by the system and by the single particles as well. The set-

Figure 3.16: Instantaneous field of the dispersed phase volurfreitonay
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Figure 3.17: Particle accumulation process as seen by the valichaigel without uncorrelated motion
a) and real physical behaviour b)

tlement of such a spourious particle concentration in the stagnation regions will have
the tendence to increase during the simulation, due to an accumulation process. This
will eventually affect the experimental data and, if not controlled, may take the model
outside of the hypothesis of dilute regimes. This has happened in this simulation since
it has been used to develop the code and almost 20M iterations have been performed,
but is not expected to happen for normal simulations. As already mentioned, possible
solutions to this problem have already been investigated [15]

In Figures[3.18 anfd 3.19 three-dimensional views of the distribution of the dis-
persed phase volume fractiary, is shown. It can be seen, besides the attitude to
concentrate in small volumes, how the action of the gas phase is sufficient to induce
the particle dispersion. In Figure 3|19, in particular, isosurfaces, @fre presented for
different levels of this variable. The isocontour colours refer to the particle velocity. It
can be seen how the condensed phase is dispersed in a large variety of structures. If
attention is paid to the upper part of Figlire 3.1p(d), for example, the effect of the swirl
on particle distribution is clearly visible.
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Figure 3.18: Instantaneous field of the dispersed phase volume fraafidar different positions of the
plane normal to the axis: (&)= 0.05 m; (b)z=0.1m; (c)z=0.15m
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Figure 3.19: Instantaneous isosurfaces of the dispersed phase volume fragti¢a) o, = 1.e—5; (b)
op=2.e-5;(c)ap=4.e-5;(d)ap=8.e-5

In Figure[3.20 the distributions of the particle velocity components are shown. It
can be seen how the fluctuations for particle velocity are less marked than for the gas
flow. The axial component maintains high values for a larger extension with respect to
the gas phase, meaning that particles follow the gas phase motion with some delay, as
they are expected to do.

This conclusion is even clearer when attention is paid to Figuré 3.21 where the
field of the particle velocity module is presented together with isolines showing where
ap = 1075 It can be observed that most of the particles are concentrated inside the
central recirculation zone, where the low velocity induce an accumulation effect.
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Figure 3.20: Instantaneous field of the dispersed phase velagitya) up z; (b) Up;s; (C) Upr

Validation against the experimental data

In Figured-3.22-3.28 the comparison between the experimental mean and RMS veloc-
ities of the dispersed phase are presented. In Flguré 3.22 the resuts ®hmm is

shown. It can be seen how the RMS velocities are undervalued by the present model.
The reason is to be searched in the particle accumulation process that has been de-
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Figure 3.21: Instantaneous field of the dispersed phase velagjtior different positions of the plane
normal to the axis: (a2 = 0.05 m; (b)z=0.1 m; (c)z=0.15 m; (d)z=0.204 m. The
isolines refer ta, = 10°°

scribed: the model do not conservate the kinetic energy and small scale fluctuations
are thus destroyed.
At greater distances from the injection plaae<0 mm), the solution is acceptable.
Low levels of axial RMS velocities can be seen in Figure 3.23(a) but these are com-
parable with other codes (CERFACS AVBP) results also presented in the figure. The
reason for the underprediction in the azinuthal RMS velocities shown in Higure 3.23(c)
is under investigation but it may be again due to an excess in the particle concentration.
Thavalues at planes at greater distance from the injection are well captured as far as
the mean components are considered. Underpredictions can be seen for the radial RMS
in the external part of the domain in Figufes 3.24(b)-3.28(a) and are mainly inherited
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from the gas phase solution.

Other sources of misprediction are instead due to the dispersed mode itself. Besides
the dissipation of the kinetic energy of the smaller turbulent scales, that has already
been outlined while discussing Figure 3.22, in Figures 3.26(aj and 3.27(a) it can be
seen how, close to the axis, the dispersed phase axial velocity is zero when a positive
component is expected. It is here hard to say whether the mechanism that leads to
this misprediction is the same that leads to the small scales kinetic energy destruction.

It must be outlined anyway that the mean axial gas velocity at higher valuess of
negative. Therefore, particles may be trapped in the central recirculation zone and
pushed back towards the injection plane by the flow. This would lead these particles to
cross the incoming parcels trajectories and then to kinetic energy destruction.
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Figure3.22: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 3 mm. Symbols are taken from experiments. Lines are computed



Model validation 77

Uszl[m/s]

rms(Usz)1[m/s]

|
0.02 X —— 0.08
(@)
10}
Q
E s
=
2 .
o] - L[ ]
0 L]
0.02 008 [y 006 0.08
.
z .
E
=
@
2
@
E
0.02 004 [y 006 0.08
ol
T 4f
E u L n
z 2r " o
=] 1 L
0 ]
2 0.02 0.04 Ty 008 0.08
.
15 =t
— 15} L n
E Fl - " .
= 1f . = "1 ] "
Zost
of
0.02 004 [y 006 0.08

Figure3.23: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z=52 mm. Symbols are taken from experiments. Lines are computed
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Figure3.24: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 85 mm. Symbols are taken from experiments. Lines are computed
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Figure3.25: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 112 mm. Symbols are taken from experiments. Lines are computed
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Figure3.26: Mean (upper part) and RMS (lower part) axial (a), radial (b) and tangential (c) velocities
for z= 155 mm. Symbols are taken from experiments. Lines are computed
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3.3 Chapter conclusions

In the present chapter the dispersed phase reference model (equatitins 1.54-1.58) with
the adopted numerics has been validated. The simulation results show an overall good
agreement with the experimental data for both phases, as far as the mean flow is consi-
dered. They also present an under estimation of the velocity fluctuations, especially at
increasing distances from the injection plane. Most of the discrepacies of the predicted
velocity of the dispersed phase from their experimental values are to be addressed to
the errors in the gas phase prediction due to the poor resolution imposed by the struc-
tured grid constraint. Nevertheless, in some parts of the domain, the errors in the
particle velocity can be indentified as the result of the adopted model limits. The ad-
dition of the terms and equations of the model connected to the uncorrelated energy
and in particular those proposed in[15], are expected to overcome these problems or,
at least, to reduce their effects.

As already said the SGS model also needed to be changed in order to well repro-
duce the Sommerfeld & Qiu experiment. The final solution was found by adopting the
strategies reported in section|1.3.
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The numerical simulation of two-phase flows is becoming an important resource for
manufacturers when combustion applications are considered. Both aeroengines and
industrial burners need the adoption of more and more complex design techniques in
order to fulfil the environmental regulation and the necessity of granting higher per-
formance. Among these design assisting tools, LES of multiphase flows is growing
in importance in the last years because of its ability in providing a large amount of
details, its reliability and relatively easiness to be used when compared to RANS tech-
niques. In the framework of dispersed multiphase flows, LES modeling of the carrier
phase is generally used in conjunction with a Lagrangian description of the motion
of the inclusions([7]. However, in the last years, researchers also focused on the Eule-
rian/Eulerian formulation, where both phases are modelled within an Eulerian frame of
referencel[2, 23, 12, 14, 650]. The reasons for these new attention must be searched in
the possibility to use techniques already developed for gaseous flows and in the greater
efficiency that can be obtained in the parallelization of the algorithins [9].

The applicability of two-fluid models to combustion applications has been proved
[51] in conjunction with the adoption of SGS modelling for the dispersed phase. Nev-
ertheless, these models do not take into account yet the uncorrelated motion of each
particle with respect to the particle cloud it belongs to. Although this feature has been
studied and models proposed in several publications [2, 23, 12] and its inclusion in the
model is considered important to reproduce particle dispersion, its applicability has
never been proved. The simulations based on the models developed to resemble this
characteristic of the dispersed phase result in the laminarization of the particle flow
[13].

Within the presented framework, the objectives of the present work were:

1. to select a model for the simulation of multiphase reacting flows, applicable to
coal powder combustion applications under dilute regimes, and test it in con-
junction with LES modelling of turbulence in the carrier phase;
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2. to propose and validate a robust numerical treatment for the dispersed phase
equations;

3. to implement the submodels needed to describe the evolution of coal in the
burner.

In order to complete the second point in the above list, the choice was made to use
the HeaRT code developed by thiigh Performance Computing GrouiiPCG) in
ENEA, the Italian National Agency for the New Technologies, Energy and Sustainable
Development.

In Chaptef_ L a complete model for two-phase dispersed flows is presented. Mass
exchange submodels necessary in order to accurately model the evolution of the coal
particles have been implemented in the HeaRT code as well.

In Chaptei R suitable numerics for the two-fluid model adopted in the validation
is described. Differently from other numerical implementations of two-fluid models
(CERFACS AVBP) [51], no SGS terms are present in the model for the dispersed
phase validated in the present work. A Il order finite volume upwind scheme with
ENO reconstruction has been proposed for the discretization of this part of the overall
model. Ad hocRiemann solvers and flux limiters have been developed in order to
reproduce the inherent upwind nature of the inertial particle flow in dilute conditions,
and the non negativity of some variables like the particle number demsiyd the
dispersed phase volumetric fractiag.

A patrticle laden flow experiment [39] from the literature has been selected for
the validation, because of the complex flow configuration, that can be also found in
industrial burners, and the large amount of available data. The results of this validation
are showed in Chaptet 3. The numerical solution resembles the main features of both
phases and, given the complexity of flow, can be considered acceptable. The predicted
level of fluctuations is in overall agreement with the experimental data.

The performed simulations allowed to state that:

1. the chosen numerical treatment for the transport equations is sufficiently robust;

2. the choice not to introduce any SGS model in the dispersed phase equations
seems to be confirmed by the agreement of predicted fluctuations compared
with the experimental ones, in correspondence to the larger gas phase structures,
where the gas phase fluctuation are well predicted;
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3. the simulation shows the problems of underprediction of small scale fluctuations
in the dispersed phase motion and of the particle front velocity that are consi-
dered, in this work, to be due to the impossibility of the implemented model to
fully resemble the evolution of inertial particles under dilute condition.
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