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ABSTRACT

The present report follows a companion one (F. Castiglia et al., Modelling flow and heat transfer

in helically coiled pipes - Part 2: Direct numerical simulations for laminar, transitional and weakly

turbulent flow in the case of zero pitch, Rapporto CIRTEN-UNIPA RL-1205/2010), in which DNS

results were presented for toroidal pipes (i.e., helically coiled pipes with zero pitch or torsion)

assuming two values of the curvature (=0.1 and 0.3) and a range of Reynolds numbers such that

laminar steady, laminar unsteady (transitional) and chaotic, or weakly turbulent, flow was obtained. In

that previous report, a particular emphasis was placed on the periodic and quasi-periodic flow regimes

obtained for intermediate values of the Reynolds number, which had been poorly or not at all

documented in the literature.

Here, computational results are presented for fully turbulent flow and heat transfer in toroidal pipes

of different curvature. Based on the existing literature, the results, although still obtained for the case

of zero pitch, can be regarded with excellent approximation as representative of helically coiled heat

exchangers, as will be better discussed in Section 1 and in the Conclusions.

Following a grid refinement study, grid independent predictions from alternative turbulence

models (k-, SST k-and RSM-) are compared with DNS results from the previous study and with

experimental pressure drop and heat transfer data. Using the SST k-and RSM-models, pressure

drop results in excellent agreement with literature data and the Ito correlation are obtained. For heat

transfer, the literature is not comparably complete or accurate, but a satisfactory agreement is obtained

in the range of available data. Unsatisfactory results, both for pressure drop and heat transfer, are

given by the k-model with wall functions.

Following the validation study, the RSM- model is applied to the computation of friction

coefficients and Nusselt numbers in the range Re = 1.4104 8104, Pr = 0.7 5.6 and (pipe

curvature) = 310-3 0.3. Power-law correlations are proved to be unsuitable to fit the Re-, Pr- and -

dependence of the Nusselt number, while the use of a properly formulated momentum -heat transfer

analogy collapses all results with high accuracy.
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NOMENCLATURE

a tube radius [m]

b coil pitch divided by 2[m]

c coil radius [m]

cp specific heat [J kg1 K1]

De Dean number, Re 

f Darcy-Weisbach friction coefficient

k turbulent kinetic energy [m2 s-2]

Nu Nusselt number, 2 ( )w b wq a T T 

Pr Prandtl number,cp /

qw wall heat flux [W m-2]

Re Reynolds number, uav 2a/

r radial coordinate [m]

T temperature [K]

u axial velocity [m s-1]

u friction velocity [m s-1]

y+ distance from the wall in wall units, y/u

Greek symbols

 dimensionless curvature, a/c

 torsion, b/c

 modified torsion parameter, see Eq. (3)

T
 thermal sublayer thickness in wall units

 kinematic viscosity [m2 s-1]

 density [kg m-3]

 thermal conductivity [W m-1 K-1]

 azimuthal angle [°]
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w wall shear stress [Pa]

 turbulence frequency [s-1]

Subscripts

av average

b bulk

cr critical

MIN minimum

MAX maximum

RAD radial

red reduced

s straight tube

SEC section

w wall

 azimuthal

Superscripts

loc local
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1. INTRODUCTION: FLOW AND HEAT TRANSFER IN CURVED

PIPES AND COILS

Although curved pipes are used in a wide range of applications, flow in curved pipes is relatively

less well known than that in straight ducts. The earliest observations on the complexity involved are

due to Thomson [1], while Grindley and Gibson [2] noticed the effect of curvature on the fluid flow

during experiments on the viscosity of air. Williams et al. [3] observed that the location of the

maximum axial velocity is shifted towards the outer wall of a curved pipe. Later, Eustice [4] showed

the existence of a secondary flow by injecting ink into water.

Due to the imbalance between inertial and centrifugal forces, a secondary motion develops in the

cross section of a curved pipe. In his pioniering work, Dean [5] wrote the Navier-Stokes equations in a

cylindrical reference frame, and, under the hypothesis of small curvatures and small Reynolds

numbers, derived power series solutions for the stream function of the secondary motion and for the

axial velocity. From his analysis a new governing parameter emerged, the Dean number

De Re  , which couples together inertial and centrifugal effects. Dean showed that two

symmetric secondary cells develop with a characteristic velocity scale avu , uav being the average

axial velocity and the dimensionless curvature defined in the following. A thorough literature review

of flow in curved pipes has been presented by Berger et al. [6].

An important engineering application of curved pipes are helical coils, which are used as heat

exchangers and steam generators in power plant because of their higher heat transfer efficiency with

respect to straight pipe configurations; for a comparison between conventional and helically coiled

heat exchangers see [7]. In particular, helical coils are also used as steam generators in some

‘generation IV’ nuclear reactors like IRIS [8]; this last application motivated the present study.

A schematic representation of a helical pipe with its main geometrical parameters is shown in Fig.

1. A helical coil can be geometrically described by the coil radius c, the pipe radius a, and the coil

pitch 2b. The inner side will be indicated with I, the outer side with O.

The dimensionless curvature and torsion can be defined as:
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a
c

 (1)

b
c

 (2)

Helical coils reduce to curved (toroidal) pipes when 0. Germano [9] presented for the first

time an orthogonal reference system for helical pipes. His work prompted a number of asymptotic

analyses in the laminar (low-Reynolds number) range, aimed to studying the effect of torsion on the

flow. Within this strand, remarkable are the works of Chen and Jan [10], Kao [11], Xie [12], Jinsuo

and Benzhao [13]. By their asymptotic approach, these authors all conclude that torsion has a

second order effect on the flow with respect to the first order effect of curvature . The effect of

curvature is the occurrence of two counter-rotating vortices in the cross section, while the effect of

torsion is an azimuthal rotation of the centres of circulation of such cells, with a global loss of

symmetry with respect to the equatorial midline I-O. In particular, Jinsuo and Benzhao [13] showed

that the mass flow rate and thus the friction coefficient depend on the curvature , while the

contribution of torsion is at most of the fourth order. Yamamoto et al. [14] performed an experimental

study on pressure drop in helical coils. They introduced a modified torsional parameter which, in the

present notation, can be expressed as

22 1

 



 


(3)

and let the Reynolds number Re vary from 5103 to 2104, the curvature from 0.01 to 0.1 and the

parameter from 0.45 to 1.72. The authors showed that in the laminar range the influence of torsion

on the friction coefficient is negligible for <1. In the turbulent range, the authors found that the

experimental data depend only on curvature for <0.5. In any case these values of the torsional

parameter can be attained only for very large curvatures and are far larger than those encountered in

practical engineering applications. For example, for the steam generator of the IRIS nuclear reactor [8]

the torsional parameter ranges approximately from 0.01 to 0.025.

The negligible effect of torsion on the global parameters is reflected in the proposed empirical

correlations. A review of experimental results for the friction coefficient in helical coils is presented
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by Ali [15]; the most popular correlations are those by Ito [16]:

5.73
10

64 21.5 De
Re (1.56 log De)

f


 


(laminar flow) (4)

0.250.304 Re 0.029f    (turbulent flow) (5)

Here and in the following f is the Darcy-Weisbach friction coefficient and the Reynolds number is

defined on the basis of the tube diameter as:

2Re avu a


 (6)

where is the kinematic viscosity of the fluid.

Coherently with the theoretical considerations in [13] and with the experimental evidence in [14],

no practical influence of torsion is revealed by Eqs. (4) and (5), i.e. the friction coefficient depends

only on the curvatureand on the Reynolds number Re in most of the applications.

As regards the transition to turbulence, Srinivasan et al. [17] studied it on the basis of friction

coefficient measurements, observing that the effect of curvature is to delay transition with respect to

straight pipes. Although the reasons for this have not yet been fully explained by turbulence theory

[6], the authors propose the following correlation for the critical Reynolds number in curved tubes:

 3Re 2.1 10 1 12cr    (7)

This correlation presents the correct asymptotic behaviour for straight ducts (=0) and predicts

Recr4.6103 for =0.01 and Recr104 for =0.1, values considerably higher than that (Recr2.1103)

valid for straight pipes.

Cioncolini and Santini [18] performed an experimental investigation of the friction coefficient in

helical coils in a wide range of curvatures (=2.710-3-0.14) with low values of the torsion parameter

(=10-4-210-2), which ensures negligible torsional effects, and Reynolds numbers ranging from 103 to

7104. The authors found a good agreement with Ito’s correlations both in the laminar and in the

turbulent range. As it happens for other relatively complex geometries [19], the lack of an abrupt

transition from laminar to turbulent flow is evidenced by a smooth and monotonic behaviour of the

friction coefficient with Re for high values of the curvature.
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Reviews of heat transfer and friction coefficient correlations in helical or curved ducts are

presented by Naphon and Wongwises [20] and by Vashist et al. [21]; unfortunately, these reviews do

not always specify the experimental conditions and, in some cases, do not make a clear distinction

between tube-side and shell-side heat transfer correlations. Here and in the following the classical

definition of the Nusselt number for the inner (tube) side will be used:

 
2w

b w

q a
Nu

T T



(8)

where qw is the average wall heat flux,  is the fluid thermal conductivity, Tb is the bulk fluid

temperature and Tw is the wall temperature.

Rogers and Mayhew [22] propose the following power-law correlation based on experimental data:

0.85 0.4 0.1Nu 0.023Re Pr  (9)

which can be viewed as a curved-duct modification for of the well-known Dittus-Bölter correlation. It

should be noticed that Eq. (9) does not exhibit the correct asymptotic behaviour for small , predicting

Nu=0 for straight pipes. Many other experimental studies have been performed in the 1960s and the

1970s on the average heat transfer rate in curved and helical pipes ([23], [24]); only some of these

investigations explored the influence of the Prandtl number on heat transfer, and very few investigated

the local heat transfer rate distribution.

More recently, Xin and Ebadian [25] presented an experimental study on heat transfer in helical

pipes; the authors explored two values of curvature, i.e. =0.027 and 0.08, Re ranging from 5103 to

1.1105, and used three different fluids, i.e. air (Pr=0.7), water (Pr=5), and ethylene glycol (Pr=175),

thus covering a broad range of Prandtl numbers. The authors found that results for air and water

(0.7<Pr<5) can be approximated by the following correlation:

 0.92 0.4Nu 0.00619Re Pr 1 3.455  (10)

with an RMS deviation of 18%. Eq. (10) has the advantage of a reasonable asymptotic behaviour for

straight pipes. However, a Reynolds exponent larger than 0.8 does not seem realistic, if one considers

that this last value is limited to straight pipes while in more complex geometries, involving separation

and reattachment, an exponent less than 0.8 is usually found [26] .
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2. MODELS AND METHODS

2.1 Numerical methods

The general purpose code ANSYS CFX 11 was used for all the numerical simulations presented

in this paper. The code employs a coupled technique, which simultaneously solves all the transport

equations in the whole domain through a false time-step algorithm. The linearized system of equations

is preconditioned in order to reduce all the eigenvalues to the same order of magnitude. The multi-grid

approach reduces the low frequency error, converting it to a high frequency error at the finest grid

level; this results in a great acceleration of convergence. Although, with this method, a single iteration

is slower than a single iteration in the classical decoupled (segregated) SIMPLE approach, the number

of iterations necessary for a full convergence to a steady state is generally of the order of 102, against

typical values of 103 for decoupled algorithms.

The computational domain was a small portion of a curved tube of circular cross section; as

discussed in the previous section, torsion was not considered in the present study because, for

geometries of practical relevance, it has been shown that torsion does not significantly affect the

global parameters f and Nu.

To simulate fully developed flow and heat transfer, periodic boundary conditions were imposed at

inlet-outlet, and no-slip condition for the velocity at the wall; a constant source term was added to the

RHS of the axial momentum equation as the driving force per unit volume which balances pressure

drop per unit length. Only one half of the section was modelled, and symmetry boundary conditions

were used along the Inner-Outer symmetry plane, as shown in Fig. 2.

As thermal boundary condition, a constant wall temperature Tw was imposed. In order to apply

periodic inlet-outlet boundary conditions also for the temperature field, a local energy source term was

applied to compensate the wall heat flux. Taking account of the definition of the Nusselt number

based on the bulk temperature Tb, this local source term must be proportional to the local axial

velocity. With this treatment, the bulk temperature and the Nusselt number tend to stable values once

convergence is reached. The Nusselt number thus obtained represents the asymptotic value of Nu for

fully developed flow.
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2.2 Turbulence modelling

Different turbulence models were used in the numerical simulations presented in this work.

The classic k-model [27] was adopted with a near-wall treatment (the “scalable” option in CFX-

11) which practically ignores the solution within the viscous sublayer y+<11, and imposes the

universal (wall law) logarithmic solution in the first point outside of it; this approach is basically

equivalent to the classic wall-function treatment with the first near-wall point outside of the viscous

sublayer.

The SST (Shear Stress Transport) k-model by Menter [28] is formulated to solve the viscous

sublayer explicitly, and requires several computational grid points inside this latter. The model applies

the k-model close to the wall, and the k-model (in a k-formulation) in the core region, with a

blending function in between. It was originally designed to provide accurate predictions of flow

separation under adverse pressure gradients, but has since been applied to a large variety of turbulent

flows and is now the default and most commonly used model in CFX-11 and other CFD codes.

The second order Reynolds stress-model (RSM-) was extensively used within this work. In this

model, the -based formulation allows for an accurate near wall treatment like in SST k-; diffusion

terms in the Reynolds stress transport equations are treated by a simple eddy diffusivity approach,

whereas great care is placed in the modelling of redistribution terms (pressure-strain rate correlations).

For the exact formulation of the model and the values of the various constants, see [29].

2.3 Grid independence assessment

A careful grid independence study was carried out in order to provide internally coherent

numerical results. The five meshes used in this study are summarized in Table 1 and are indicated as

meshes 1 through 5 from the coarsest to the finest. The meshes are of the multi-block structured type,

and are identified by the parameters NRAD and Nas shown in Fig. 2. NSEC represents the total number

of cells in the cross section; rMAX/rMIN is the ratio of maximum/minimum cell size in the radial

direction (outer block), while the last column y+
min in Table 1 is the location (in wall units /u) of the

point closest to the wall for the highest Reynolds number considered, Re=8104.

Meshes 1 and 2 do not differ in the number of nodes, but only in the wall stretching parameter
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rMAX/rMIN (and therefore in the wall resolution); the same holds for meshes 3 and 4. Meshes 2 and 3

have different number of nodes, but the same wall resolution. Meshes 3, 4 and 5 ensure respectively 8,

27 and 63 points within the hydrodynamic viscous sublayer y+<11 for Re=8104.

For all values of the Prandtl number simulated, up to Pr=5.6, a correct resolution of the thermal

conductive sublayer must also be ensured in order to guarantee grid-independence of the thermal

results and physically consistent solutions. Experimental data reported in [30] provide a value of the

thickness of the thermal viscous sublayer T
+=7.55 (in wall units) for Pr=5.9; on the basis of this

estimate, meshes 3, 4 and 5 include 6, 22 and 51 points, respectively, within the thermal sublayer in

the most critical case (Pr=5.6, Re=8104).

The results of the grid-independence study are reported in Table 2 for a typical value of the

curvature, =0.1, and the RSM-model. An asymptotic tendency of the global values to converge

with mesh refinement, from mesh 1 to mesh 5, can be observed. There is a significant variation from

mesh 1 to mesh 2 due to the increased resolution of the viscous sublayer, and from mesh 2 to 3 due to

the increased number of nodes. Both the Darcy-Weisbach friction coefficient and the Nusselt number

converge, showing differences of less than 0.5% between mesh 4 and mesh 5.

On the basis of these results, mesh 4 was adopted for all the subsequent simulations conducted in

the present study. Note that mesh 5 would require CPU time three times higher.

2.4Validation by comparison with DNS results

In this section, computational results obtained by using the different turbulence models are

compared with the results of a fully resolved direct numerical simulation (DNS). This was performed

by using a grid of about 4106 nodes with y+1.2 at the first grid point close to the wall; statistics were

computed over about 20 characteristic times a/u(LETOTs).

The case studied is characterized by a curvature =0.3 , a Reynolds number Re=1.4104, and a

Prandtl number Pr=0.86. The values of the parameters Re and are the most critical for turbulence

model validation, because, as it will be discussed in the next section, the largest discrepancies from

experimental data are obtained for the highest curvature and the lowest Reynolds number.

Fig. 3 shows a comparison of the DNS average flow field in the cross section with results from the
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turbulence models (k-with near-wall treatment, SST k-, RSM-). The dimensionless temperature

(T-Tw)/(Tb-Tw), the dimensionless velocity u/uav, and the dimensionless turbulent kinetic energy 2/ avk u

are represented respectively in the first, second and third column of the figure. In the DNS results, the

Dean circulation is evidenced by the shape of the contours, which are deformed by the secondary jet

along the wall; the Dean vortex close to the inner region is most clearly evidenced by the k contours.

SST k- and RSM- yield similar velocity and temperature fields which are very close to that

predicted by DNS, while the k-model with wall functions captures these structures only roughly. The

main axial velocity contour field shows slightly better results for RSM with respect to SST in

capturing flow features close to the Dean vortex.

Fig. 4 shows profiles of the dimensionless temperature as a function of the dimensionless radial

coordinate r/a along the Inner-Outer direction, with r/a=1 at the inner side and r/a=1 at the outer

side. This figure shows the different ability of the models to reproduce the main (horizontal) thermal

stratification. As it was expected, k-completely fails in describing this stratification, while both SST

and RSM results are in good agreement with DNS, with a more accurate prediction from RSM in all

regions; in particular, the maximum temperature is predicted better by RSM with respect to SST.

Fig. 5 shows the local wall shear stress loc
w , normalized by the mean wall shear stress w, as a

function of the azimuthal angle which increases from 0 at the inner side (I) to 180° at the outer side

(O). For SST and RSM, the agreement is good for low angles (<45), where both models remarkably

capture the Dean vortex features and the detachment point location. In the central and outer regions

both models exhibit a lesser accuracy, predicting a uniform distribution ofw for >90°, whereas DNS

predicts a slight monotonic increase with a maximum for =180°. The k-predictions are of far lower

quality.

Fig. 6 shows the local Nusselt number Nuloc, normalized by the mean Nusselt number Nu, as a

function of the azimuthal angle . A correct overall behaviour of the plotted quantity is obtained using

the SST and RSM turbulence models, which predict a growing heat transfer rate going from the inner

to the outer region, although an underestimate of Nu loc by about 10% can be observed at the outer side

(=180°). For low angles (<45°), the SST and RSM models capture the Dean vortex features and the
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detachment location. As in the w plot, k-predictions are far less satisfactory and exhibit a more

uniform behaviour of Nuloc.

2.5 Validation by comparison with experimental pressure drop results

A comparison of results from different turbulence models with the experimental data obtained by

Cioncolini and Santini [18] is discussed in this section. Turbulence models were used well into the

laminar range in order to test their intrinsic ability to predict laminarization and to provide solutions in

the transition region.

Fig. 7 shows a comparison of experimental and computational results for the Darcy-Weisbach

friction coefficient versus Re for the geometry “COIL09” of [18], characterized by a curvature

=9.6410-3. The experimental data are in excellent agreement with Ito’s correlations. At this relatively

low value of the curvature, in the transitional region the data exhibit a “memory” of the transitional

“knee” typical of the straight pipe, with a friction coefficient approximately constant from Re=4103 to

Re=104.

The k-model with the above mentioned near-wall treatment is totally inadequate to simulate the

correct behaviour of f, yielding a heavy underprediction of this quantity even in the fully turbulent

region. The SST and RSM results are both in good agreement with the experimental data in the

turbulent range, and are able to predict laminarization at low Re. However, they give less satisfactory

results in the transitional region, predicting a smooth connection between laminar and turbulent

curves; thus, they can not be fully recommended for transitional flows.

Fig. 8 shows the same comparison for a higher value of curvature, i.e. “COIL01” of [18],

characterized by =0.143. In this case the experimental data suggest, like in complex geometries [19],

a smooth transition between the laminar and the turbulent region, without any “knee”; the

experimental friction coefficient curve is even smoother than in the previous case of Fig. 7 because of

the more intense secondary circulation induced by the higher curvature. Also in this case the

experimental data are reproduced with high accuracy by the Ito correlation, which therefore, although

proposed half a century ago, can be regarded as an excellent one in its range of validity. The k-model

underpredicts f in the whole Reynolds number range, while SST and RSM yield a good agreement
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with the experimental data in the turbulent range and behave better than in the lower-curvature case in

Fig 7 also in the laminar and transitional regions.

2.6 Validation by comparison with experimental heat transfer results

For heat transfer, a comparison was made with the experimental results of Xin and Ebadian [25].

Unfortunately, these authors investigate only two values of curvature, =0.027 and 0.08, and present

most of their results in a reduced form that does not allow the original data to be retrieved. Fig. 9

shows a comparison between computational and experimental results for Nu for =0.08, a Prandtl

number of 5 (cold water in the experiments), and Reynolds numbers in the range 1045104. Due to the

experimental method used, an additional (not declared) uncertainty of the order of 1 is intrinsically

present in the Prandtl number of the experimental study for water; therefore, it is safer to state that in

the experiments Pr is in the range 46, i.e. 51. Both SST and RSM explicitly resolve the wall thermal

and mechanical sublayers, with the first computational point at y+<0.25 in all cases, and a substantial

grid-independence of the results. In the turbulent range, both SST and RSM slightly overestimate the

Nusselt number, which could partly be due to the above mentioned uncertainties on Pr. The

correlation provided by Rogers and Mayhew, Eq.(9), falls in between the numerical results and the

experimental data.

Fig. 10 shows a comparison of the reduced Nusselt number  10.4Nu Nu Pr 1 3.455red 
  as a

function of the Reynolds number. Circles indicate the experimental data for two test sections with

curvatures =0.027 and 0.08 and Pr=0.75; error bars indicate the declared uncertainty on the data.

Triangles show numerical results obtained using the RSM- turbulence model in the same range of

curvature and Pr. Computational results fall within the scatter band of the experimental data; however,

the experimental data themselves exhibit a relatively large dispersion once reduced by the proposed

law of Eq.(10).

From the above discussions, it emerges that the SST and RSM models ensure a satisfactory and

comparable accuracy in heat transfer predictions. In this work, the higher order RSM model was

eventually chosen to perform the extensive parametrical study documented in the following section.
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3. PARAMETRICAL STUDY

3.1 The data set

A parametrical computational study on flow and heat transfer in curved ducts was carried out by

using the second order Reynolds Stress Model (RSM-), in which the boundary layer was explicitly

resolved and the mesh resolution guaranteed y+<0.25 at the first grid point close to the wall even in the

most critical condition. The Reynolds number Re was made to vary in the range 1.41048104, the

Prandtl number Pr in the range 0.75.6 and the curvature in the range 00.3. The range chosen for

the Reynolds number ensures that all cases simulated fall in the full turbulent region even for the

highest values of curvature and the lowest value of the Reynolds number. The range chosen for the

Prandtl number covers air (Pr=0.7) and water (Pr=1 for water close to the saturation temperature,

Pr=5.6 for ambient temperature water), while the range chosen for the curvature includes straight

pipes (=0) and highly curved ducts (=0.3), with several curvatures of practical interest in between.

A full-matrix dataset was produced including six values of Re (1.4104, 2104, 2.8104, 4104,

5.6104, 8104), seven values of Pr (0.7, 1, 1.4, 2 , 2.8, 4, 5.6), and six values of the curvature (0,

310-3, 10-2, 310-2, 0.1, 0.3), for a total of 252 test cases. The results from all the test cases, i.e. the

computed values of the Darcy friction coefficient f and of the mean Nusselt number Nu, are

summarized in Table 4. Fig. 11 shows f against Re for the different in a doubly logarithmic scale;

the friction coefficient exhibits the classic monotonic decreasing behaviour with Re, while the

influence of is to progressively increase f. Fig. 12 shows a parity plot between computed values of

the Darcy friction coefficient and those predicted by the Ito correlation (5) for turbulent flow for all

the test cases in Table 4, with the exception of those at=0.3 which lie outside of the range of validity

of Eq. (5). An excellent agreement can be observed, with an rms dispersion of a few %; the largest

discrepancies are obtained for the largest f, corresponding to the lowest Reynolds number and the

largest values of the curvature. Fig. 13 shows Nu against Re for the different in a doubly logarithmic

scale and for two values of Pr, i.e. Pr=0.7 and 5.6. The Reynolds number dependence of Nu follows

(at least approximately) a power law, but its slope var ies with Pr and .
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3.2The power-law dependence: a discussion

Indicating with fs and Nus respectively the friction coefficient and the Nusselt number for straight

ducts, and with f and Nu the corresponding quantities for a curved geometry, the ratios f/fs and Nu/Nus

will be used as reference quantities for discussion in this section.

If a power-law like that proposed by Xin and Ebadian, Eq.(10), held for the Nusselt number in

curved ducts, and the Dittus-Bölter correlation Nus=0.023Re0.8Pr0.4 in straight ducts, the ratio Nu/Nus

should behave as:

 Nu
Re Pr 1

Nu
m n

s

c d     (11)

with d=3.455, m=0.12, n=0, c=0.269.

Otherwise, if the Rogers correlation, Eq.(9), held for curved ducts, one would obtain:

Nu
Re Pr

Nu
m n p

s

c    (12)

with c=1, m=0.05, n=0, p=0.1.

Apart from the exact values of the various constants, Eqs.(11) and (12) predict that power laws for

the Re- and Pr-dependence, and a linear or power-law for the -dependence, should be observed in the

computational results. However, this turns out not to be the case.

In particular, Fig. 14 shows a log-log diagram of f/fs and Nu/Nus as functions of , for a fixed

Reynolds number of 2104 and all the values of the Prandtl number studied; Fig. 15 shows the same

quantities in a linear-linear scale. The hydrodynamic solution, and thus the ratio f/fs, do not depend on

the Prandtl number, and Figs. 14-15 show that the friction coefficient ratio in a curved duct grows

with the curvature . The Nusselt ratio Nu/Nus grows with the curvature regardless of the Prandtl

number, but increases more rapidly for the lower values of Pr. The two graphs reveal that neither a

linear nor a power-law dependence upon the curvature can be found in the results for f/fs or Nu/Nus.

The function (1+d) of Eq. (11) , proposed in [25], can perhaps be applied to a small range of

curvatures, but it appears as a linearization of a more complex dependence; the power-law p

dependence of Eq. (12) is also not respected and, moreover, does not provide the correct asymptotic
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behaviour of Nu/Nus for 0.

Figure 15 shows a log-log diagram of f/fs and Nu/Nus as functions of Pr, for a fixed Reynolds

number of 2104 and different values of the curvature. The hydrodynamic so lution and thus the ratio

f/fs do not depend on the Prandtl number, and therefore the corresponding curves are horizontal lines

for any value of . In the range examined, the Nusselt number ratio remains always smaller than the

friction coefficient ratio. An inverse power-law dependence on Pr can be observed for the Nusselt

ratio at all values of , but the power exponent increases in absolute value with the curvature instead

of being a constant: therefore, the dependence of Nu/Nus upon Pr predicted by Eqs. (11) and (12) is

not confirmed, while a Pr-nlaw would be more coherent with the results. A similar behaviour is

observed for higher Reynolds numbers. For a given value of the curvature, the slope of the Nu/Nus

lines decreases in absolute value with the Reynolds number, as shown in Fig. 17 where Nu/Nus is

plotted against Pr for various Re. A hypothetical power law dependence on Pr should be of the form

Prng(Re), g(Re) being a decreasing positive function of the Reynolds number.

Figure 18 shows a log-log diagram of f/fs and Nu/Nus as functions of Re, for Pr=1 and 4 and

different values of the curvature . The Reynolds number dependence appears to be weak, especially

at moderate values of the curvature i.e. 0.03. Therefore, also in this case a hypothetical Reynolds

number exponent for Nu/Nus should be negative, which is consistent with the above mentioned fact

that in complex flows with recirculation the Nu-Re power law exponent is systematically lower than

the value 0.8 typical of simple geometries. Moreover, such exponent would depend on and Pr, and

only a Remg(Pr) law would be approximately consistent with the numerical results.

The above analysis shows that the simple, empirically based, power law dependences proposed in

the literature can not account for the complexity of the real functional dependences, and a different

approach is necessary for a correct regression of the data set.

3.3 Heat - momentum transfer analogy

Churchill [31] presents a critical review of the classical algebraic analogies between heat, mass and

momentum transfer, and derives an exact integral formulation of the momentum-heat transfer analogy

for circular ducts. The author shows that, surprisingly, very popular power-law formulas like the
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Colburn analogy:

 1/3Nu Pr Re /8f  (13)

are not physically founded or theoretically based, but are only used for traditional reasons or because

they are easy to manipulate. For example, Churchill shows that the correct asymptotic behaviour of

the Nusselt number for Prshould be Re(f/8)1/2, and not Re(f/8) as prescribed by the Reynolds-

Colburn analogy.

Pethukov [32] correlated experimental values of the Nusselt number for turbulent straight pipe

flow and for 0.5Pr2000 by the expression:

 
 2 /3

Pr Re / 8
Nu

1.07 12.7 /8 Pr 1
f

f


  
(14)

Eq. (14) is based on the same general integral analogy used later by Churchill [31], with an eddy

diffusivity model for the Reynolds stresses, and therefore it rests on a more sound theoretical ground

than the simple Dittus-Bölter power-law. In fact, for straight pipes Eq. (14) provides a greater

accuracy, with a deviation of only a few percent with respect to experimental data.

Therefore, it is worth checking whether Pethukov’s analogy, Eq. (14), can successfully be applied

also to curved pipes, i.e. can lead to a reduction of the dispersion with respect to power-law

correlations. In the literature on curved ducts, only Seban and McLaughlin [23] introduce the friction

coefficient as a modelling parameter for the Nusselt number, but maintain a power-law dependence on

the Prandtl number.

In Fig. 19, a parity plot is presented of the CFD-computed Nusselt number against the Pethukov

predictive formula (14), in which for the Darcy friction coefficient the values computed by CFD for

curved geometries, Table 4, were used. The numerical data collapse very well with an RMS dispersion

of only 1-2%. As Fig. 12 suggests, very similar results would be obtained by correlating computed

values of Nu with those predicted by substituting the values of f given by Ito’s correlation (5) into the

Pethukov analogy (14). Fig. 20 shows such a parity plot of Nu against the Pethukov formula (14). This

shows that the combination of Eqs. (5) and (14) predicts Nu in curved ducts with the same accuracy of

the present RSM-simulations and is far superior to previously suggested correlations.
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4. CONCLUSIONS

The comparison of alternative turbulence models showed that the SST k-eddy viscosity / eddy

diffusivity model and the second order Reynolds Stress-model give comparable results for the

friction coefficient f and the Nusselt number Nu, the latter being slightly better in predicting details of

velocity and temperature profiles when compared with direct numerical simulations. Moreover, both

models are able to predict laminarization and thus are applicable with only a moderate error also to

Reynolds numbers below the transition to fully turbulent flow (i.e, in the laminar and transitional

range). The standard k-model, with a near-wall treatment equivalent to using classic wall functions,

yields a severe underprediction of both f and Nu.

The application of the RSM-model in the fully turbulent regime (Re>1.4104) for different

values of the curvature yields pressure drop results in excellent agreement with experimental data

[18] and with the correlation proposed by Ito [16]. Heat transfer results obtained for different Prandtl

numbers in the range 0.75.6 are in good agreement with published experimental results [25] but are

poorly described by simple power-law correlations. Instead, the use of a properly formulated

momentum-heat transfer analogy, notably in the form known as the Pethukov correlation [32], yields

an excellent reduction of all heat transfer data, using either the CFD-computed friction coefficient or

that predicted by the Ito correlation [16].

As in all companion reports on the same subject, it is worth noting that, although the main

interest is in finite-pitch helical coils of the kind used in heat exchangers, and particularly in the steam

generators for the IRIS reactor, results obtained for zero pitch (toroidal) pipes are of great relevance

and help a better understanding of the role of Reynolds number and curvature to be obtained without

the extra complexity introduced by an additional parameter (torsion). Of course, this is possible

because a large bulk of experimental and computational results presented in the last decades have

shown that, within certain limits, coil torsion, which differentiates a helical pipe from a toroidal one,

has only a higher order effect on flow features, so that a moderate torsion does not significantly affect

global quantities such as the friction factor and the Nusselt number, nor the critical Reynolds numbers

for flow regime transitions. For example, in their experimental investigations for turbulent flow and
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curvaturesranging from 0.026 and 0.088, Xin and Ebadian [25] did not observe any influence of the

coil pitch up to torsions of 0.8. Yamamoto et al. [14] conducted friction factor measurements for

high values of the curvature (>0.5) and showed that this quantity was negligibly affected by torsion

provided that a suitably defined torsional parameter =(/2)1/2*/(1+2)1/2 did not exceed 0.5, a

condition corresponding to highly stretched pipes. Their study suggests that, for lower curvatures, the

influence of torsion on the friction coefficient would be negligible at all pitches. Our own preliminary

computations based o RANS turbulence models have shown that, for curvatures typical of the IRIS

steam generators (0.02), increasing torsion from 0 to 0.3 (a value also typical of the IRIS SG’s)

led to a decrease of the friction coefficient f and of the mean Nusselt number Nu of only 2%, while a

further increase of to the very large value of 1 led to a decrease in f and Nu of 6-7% with respect to

a toroidal pipe.
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Table 1 – Meshes used for the grid independence study.

MESH NRAD N NSEC rMAX/rMIN y+
min

1 38 19 7220 10 3.5

2 38 19 7220 100 0.65

3 130 27 30996 21 0.65

4 130 27 30996 182 0.12

5 250 43 93396 315 0.04
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Table 2 – Grid independence results for =0.1.

MESH f Nu(Pr=0.7) Nu(Pr=5.6)

1 0.025878 206.66 565.04

2 0.026032 207.13 577.96

3 0.026170 207.24 575.85

4 0.026182 211.32 572.84

5 0.026275 211.83 574.60
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Table 3 – Comparison with the DNS results for =0.3 and Re=1.4104.

Model f Nu(Pr=0.86)

k-wall functions 0.033620 48.55

SST k- 0.053291 70.28

RSM- 0.055601 71.90

DNS 0.048850 65.68
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Table 4 – Summary of test cases and results obtained in the present work (mesh 4, RSM-)

Nu
Re×103 ×f×102 Pr=0.7 1 1.4 2 2.8 4 5.6

14 0 3.038 42.06 50.32 59.30 70.08 81.42 94.60 108.09
20 0 2.737 54.61 65.89 78.18 92.97 108.57 126.73 145.32
28 0 2.498 70.18 85.27 101.76 121.68 142.72 167.28 192.43
40 0 2.279 91.90 112.42 134.93 162.20 191.08 224.87 259.53
56 0 2.101 118.92 146.32 176.47 213.13 252.05 297.70 344.59
80 0 1.945 156.77 193.97 235.09 285.22 338.63 401.42 466.03
14 3 3.034 42.07 50.37 59.41 70.26 81.68 94.92 108.46
20 3 2.732 54.65 65.97 78.33 93.21 108.86 127.11 145.74
28 3 2.499 70.24 85.40 101.98 121.98 143.07 167.71 192.89
40 3 2.289 92.04 112.64 135.23 162.58 191.52 225.32 259.96
56 3 2.111 119.15 146.59 176.82 213.54 252.49 298.08 344.85
80 3 1.943 157.00 194.24 235.40 285.54 338.89 401.79 466.27
14 10 3.225 45.02 53.78 63.24 74.48 86.22 99.79 113.57
20 10 2.918 58.40 70.33 83.23 98.64 114.78 133.47 152.50
28 10 2.665 74.98 90.91 108.21 128.95 150.72 175.99 201.76
40 10 2.432 98.14 119.77 143.35 171.74 201.64 236.43 271.95
56 10 2.247 126.99 155.81 187.38 225.53 265.80 312.80 360.85
80 10 2.076 167.52 206.59 249.62 301.80 357.09 421.77 488.02
14 30 3.625 49.86 59.18 69.10 80.82 92.94 106.87 120.98
20 30 3.256 64.34 77.01 90.60 106.70 123.42 142.70 162.24
28 30 2.964 82.29 99.23 117.44 139.16 161.80 187.96 214.51
40 30 2.703 107.35 130.34 155.26 185.02 216.19 252.29 289.01
56 30 2.491 138.50 169.19 202.59 242.69 284.78 333.68 383.49
80 30 2.292 182.08 223.76 269.33 324.21 382.14 449.57 518.42
14 100 4.355 59.69 69.95 80.57 92.84 105.40 119.73 134.21
20 100 3.865 76.00 89.87 104.41 121.36 138.78 158.72 178.88
28 100 3.486 96.20 114.68 134.21 157.15 180.84 208.02 235.53
40 100 3.148 124.34 149.38 175.91 207.64 240.37 278.04 316.22
56 100 2.881 159.25 192.63 228.46 271.02 315.37 366.55 418.50
80 100 2.638 208.01 253.31 302.22 360.62 421.72 492.49 564.47
14 300 5.487 73.13 80.05 91.22 103.76 116.35 130.61 145.00
20 300 4.762 91.15 106.80 122.77 141.00 159.42 180.33 201.40
28 300 4.233 113.43 134.05 155.34 179.87 204.87 233.30 261.95
40 300 3.769 144.49 172.18 201.14 234.81 269.37 308.84 348.63
56 300 3.411 182.96 219.69 258.44 303.85 350.70 404.43 458.74
80 300 3.063 236.54 286.08 338.92 401.37 466.12 540.68 616.25
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Fig. 1 Schematic representation of a helical pipe with its main geometrical parameters: a, tube

radius; c, coil radius; 2b, coil pitch. The inner (I) and outer (O) sides of the curved duct

are also indicated.
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Fig. 2 Mesh (number 4) used to perform the computations. The grid is of the multi-block

structured type. The total number of cells in the whole cross section would be NSEC=4N

(N+2 NRAD), but only one half of the section is simulated.




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Fig. 3 Comparison of turbulence models and DNS results for Re=1.4104, =0.3. The three

columns report contours of the dimensionless velocity u/uav (min=0, max=1.2,

interval=0.1), the dimensionless temperature (T-Tw)/(Tb-Tw) (min=0, max=1.2,

interval=0.1), and the dimensionless turbulent kinetic energy 2/ avk u (min=0,

max=0.015, interval=0.001).
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Fig. 4 Profiles of the dimensionless temperature (T-Tw)/(Tb-Tw) along the Inner-Outer line for

Re=1.4104, =0.3. Predictions from different turbulence models are compared with

DNS average results.
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Fig. 5 Profiles of the dimensionless wall shear stress /loc
w w  along the wall for Re=1.4104

and =0.3. Predictions from different turbulence models are compared with DNS

average results (solid line). The azimuthal angle runs from 0 at the inner point to 180

at the outer point.
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Fig. 6 Profiles of the dimensionless local Nusselt number Nu / Nuloc along the wall for

Re=1.4104 and =0.3. Predictions from different turbulence models are compared with

DNS average results (solid line). The azimuthal angle runs from 0 at the inner point to

180at the outer point.
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Fig. 7 Darcy-Weisbach friction coefficient as a function of the Reynolds number. Predictions

from different turbulence models are compared with experimental data by Cioncolini

and Santini for “COIL09” (=9.6410-3). Broken lines correspond to the Ito correlations

in the laminar and turbulent ranges.
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Fig. 8 Darcy-Weisbach friction coefficient as a function of the Reynolds number. Predictions

from different turbulence models are compared with experimental data by Cioncolini

and Santini for “COIL01” (=0.143). Broken lines correspond to the Ito correlations in

the laminar and turbulent ranges.



37

Fig. 9 Comparison of the average Nusselt number obtained by numerical simulations using the

SST and RSM models with experimental data by Xin and Ebadian for =0.08, Pr=5.

Error bars for the experiments are also shown. The broken line represents the Rogers and

Mayhew correlation, Eq. (9).
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Fig. 10 Comparison of the reduced average Nusselt number Nu Pr0.4 (1+3.455)1 obtained by

numerical simulations using the RSM model with experimental data by Xin and Ebadian

for two values of the curvature (=0.027, 0.08) and 0.7Pr5.



39

Fig. 11 Darcy-Weisbach friction coefficient as a function of the Reynolds number at different

curvatures for the whole the computational data set. Results for =0.003 and =0

(straight tube) are practically coincident.
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Fig. 12 Parity plot of the RSM computed friction coefficient against that predicted by the Ito

correlation.
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Fig. 13 RSM-computational results for the Nusselt number as a function of the Reynolds

number for two values of the Prandtl number, Pr=0.7 and 5.6. Within each family,

different curves are characterized by the same values of as in Fig. 11.
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Fig. 14 Doubly logarithmic plot of the RSM-computed relative friction coefficient f/fs and

Nusselt number Nu/Nus as functions of the curvature for Re=2104 and different values

of Pr.
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Fig. 15 Doubly linear plot of the RSM-computed relative friction coefficient f/fs and Nusselt

number Nu/Nus as functions of the curvature for Re=2104 and different values of Pr.
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Fig. 16 Doubly logarithmic plot of the RSM-computed relative friction coefficient f/fs and

Nusselt number Nu/Nus as functions of Pr for Re=2104 and different values of .
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Fig. 17 Doubly logarithmic plot of the RSM-computed relative Nusselt number Nu/Nus as a

function of Pr for =0.1 and Re ranging from 1.4104 to 8104.
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Fig. 18 Doubly logarithmic plot of the RSM-computed relative friction coefficient f/fs and

Nusselt number Nu/Nus as functions of Re for Pr=1 and 4 and different values of .
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Fig. 19 Parity plot of the mean Nusselt number computed by CFD using the RSM-turbulence

model against that predicted by the Pethukov analogy using computed values of f.
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Fig. 20 Parity plot of the mean Nusselt number computed by CFD using the RSM-turbulence

model against that predicted by the Pethukov analogy using the values of f given by the

Ito correlation.
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