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ABSTRACT

Direct Numerical Simulations of turbulent flow and heat transfer in toroidal pipes for Re14 000 are

described in this report. Three different curvatures were examined, i.e. =0 (straight pipe), 0.1 and

0.3. The Prandtl number was 0.86, representative of water at 500 K and 60 bar. The finite volume

code ANSYS-CFX was used, with computational grids of 11.5106 hexahedral volumes for the smaller

curvature torus (=0.1) and 3.4106 volumes for =0.3 and for the straight pipe. In the latter case, the

computational domain was 10 times the pipe diameter in length. Simulations were protracted for 30

LETOT’s starting from the condition of zero velocity.

Time–averaged results for curved pipes showed Dean circulation and a strong velocity and

temperature stratification in the torus radial direction; most of the core flow features were compatible

with simple inviscid momentum balances. Secondary flow markedly influenced the structure of

turbulence; velocity and temperature fluctuations in curved pipes were mainly confined to some

specific areas of the near-wall layer. In the outer region, counter-gradient heat transport by turbulent

fluxes was observed. For the same Reynolds number, turbulence levels were lower than in a straight

pipe. The Reynolds momentum-heat transfer analogy was found to hold globally, but not locally.
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NOMENCLATURE

a pipe radius [m]

c torus radius [m]

cp specific heat [J kg1 K1]

De Dean number, Re 

f local Darcy friction coefficient,  24 / / 2w avu 

0f equilibrium Darcy friction coefficient

N number of grid points

Nu local Nusselt number,   2 ( )w b wq a T T 

Pr Prandtl number

p pressure [Pa]

ps opposite of streamwise pressure gradient [Pa m-1]

P dimensionless pressure,  2/ avp u

q heat flux [W m-2]

r radial coordinate in the cross section [m]

rp radial coordinate from torus axis [m]

R dimensionless radius, r/a

Re bulk Reynolds number, uav 2a/

Re friction Reynolds number, 0 /u a 

s thickness of secondary flow boundary layer [m]

S dimensionless boundary layer thickness, s/a

T temperature [K]

T local wall temperature scale,  /w pq c u [K]

u velocity [m s-1]

uav cross-section averaged streamwise velocity [m s-1]
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u local friction velocity, /w [m s-1]

0u equilibrium friction velocity, 0 /w [m s-1]

U dimensionless velocity, u/uav

y+ distance from the wall in wall units, 0 /yu 

Greek symbols

 dimensionless curvature, a/c

 dissipation [m2s-3]

 thermal conductivity [W m-1 K-1]

 kinematic viscosity [m2 s-1]

 density [kg m-3]

K Kolmogorov length scale [m]

 azimuthal angle in the pipe’s cross section [°]

 dimensionless temperature, (T-Tw)/(Tb-Tw)

 shear stress [Pa]

0
w equilibrium wall shear stress, psa/2 [Pa]

 similarity quantity,  8 Nu/ RePr f

Subscripts

b bulk

cr critical

Dean related to Dean circulation

eff effective

LAM laminar

RAD radial

rms root mean square
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rp radial direction from torus axis

s,r, streamwise (axial), radial and azimuthal directions

sp straight pipe

sec secondary

tot total

w wall

 azimuthal

Superscripts

0 equilibrium

+ expressed in wall units

Averages

 azimuthal average

 time average

' fluctuating component
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1. INTRODUCTION: FLOW AND HEAT TRANSFER IN CURVED

PIPES AND COILS

1.1. Problem definition

Fig. 1 shows a schematic representation of a closed toroidal pipe; the torus radius, i.e. the radius of

curvature, will be indicated by c, while the cross-section radius by a. The inner, outer, up and down

sides will be indicated by I, O, U, D , respectively; the cross-section azimuthal angle will be

measured in the clockwise direction looking from upstream, with (I)=-/2, (O)=/2. The bulk

Reynolds number Re will be defined on the basis of the pipe diameter 2a and the cross-section

averaged (bulk) velocity uav as Re 2 /avu a  ,being the kinematic viscosity of the fluid. The

friction-velocity Reynolds number will be defined as 0Re /u a   on the basis of the equilibrium

friction velocity 0 0 /wu   , being. 0 ( / 2)w sa p the equilibrium wall shear stress and ps the

streamwise driving pressure gradient. Finally, the curvature will be defined as = a/c.

An important engineering application of curved pipes are helical coils, which are used for heat

exchangers and steam generators in power plants because they are compact and easily accommodate

thermal expansion. Several theoretical fundamental studies have appeared in the last decades on this

geometry [1-3]; these works show that coil torsion, which characterizes a helical pipe with respect to a

toroidal one, has only a higher order effect on flow features, and, if sufficiently low, does not

significantly affect global quantities such as friction and heat transfer coefficients.

1.2. Early studies

The earliest studies of flow in curved pipes are due to Boussinesq [4] and Thomson [5] in the 19th

century. Later, Grindley and Gibson [6] noticed the effect of curvature on the fluid flow during

experiments on the viscosity of air. Williams et al. [7] observed that the location of the maximum

axial velocity is shifted towards the outer wall of a curved pipe. Eustice [8] showed the existence of a

secondary flow by injecting ink into water. Early studies have been recently reviewed, for example, by

Di Piazza and Ciofalo [9]. A thorough literature review of flow in curved pipes has been presented by

Berger et al. [10].
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A more quantitative approach was proposed by Dean [11], who wrote the Navier-Stokes

equations in a toroidal reference frame, and, under the hypothesis of small curvatures and laminar

stationary flow, derived a solution for the stream function of the secondary motion and for the main

axial velocity, both expanded in power series; the first term of the series corresponds to the Hagen-

Poiseuille flow. From his analysis a new governing parameter emerged, now called the Dean number

De Re  , which couples together inertial, centrifugal and viscous effects. Although Dean

originally based his number on the maximum velocity in a straight pipe under the same pressure

gradient, most of the authors later used the average axial velocity in the curved pipe uav, and we will

follow this strain; the Dean equations can be properly reformulated using this latter scale [10].

1.3. Transition to turbulence

As regards transition to turbulence, Cioncolini and Santini [12], for sufficiently high values of the

curvature (> 0.0416), observed a smooth transition from laminar to turbulent flow; the equilibrium

Darcy friction coefficient 0f (four times the Fanning coefficient) decreased monotonically with Re

and transition to turbulence was indicated only by a change in slope of the 0f -Re curve, occurring at

a Reynolds number which the authors approximated by the correlation:

0.47Re 30000cr   (1)

in the range 0.0416 0.143. For lower curvatures (< 0.0416), Cioncolini and Santini observed

that in the proximity of transition the 0f -Re curves exhibited a local minimum followed by an

inflection point and by a local maximum; also in this range of they proposed transition correlations,

more complex than Eq. (1) and based on identifying transition with the local minimum of 0f , i.e.

with the first departure from the laminar behaviour. Similarly, Ito [13] gave an upper bound for the

applicability of the laminar flow friction correlation, which can be identified with a transition

criterion:

 0.6Re 2000 1 13.2cr   (2)

in the range 5104 0.2.



9

Also Srinivasan et al [14] studied the transition to turbulence on the basis of friction coefficient

measurements and arrived at a similar conclusion. The authors proposed their own correlation for the

critical Reynolds number in curved pipes:

 Re 2100 1 12cr   (3)

Unlike Eq. (1), Eqs. (2) and (3) exhibit the correct asymptotic behaviour for = 0 and show that the

effect of curvature is to delay transition to turbulence with respect to straight pipes. For typical values

of the curvature, Eqs. (1) through (3) yield similar values of Recr; for example, they predict Recr = 10

069, 10 165 and 8631, respectively, for = 0.1, and Recr = 17 036, 14 820 and 15 902, respectively,

for= 0.3. Note, however, that the latter case is outside the range of validity of Eqs. (1) and (2).

1.4. Friction

Experimental investigations of friction in curved pipes in a wide range of curvatures and Reynolds

numbers are presented by Ito [13], who derived accurate correlations for the equilibrium friction

coefficient 0f in the laminar and turbulent ranges:

0
5.73

10

64 21.5 De
Re (1.56 log De)

f


 


(laminar flow) (4)

0 0.250.304 Re 0.029f    (turbulent flow) (5)

valid for 5104 0.2. Eqs. (4) and (5) have recently been confirmed by the extensive experimental

work of Cioncolini and Santini [12] in a wide range of curvatures

(2.7103 0.143) and Reynolds numbers (Re=103-7104): the authors found a good agreement

with Ito’s correlations both in the laminar and in the fully turbulent range.

Eq. (5) can be regarded as a correction to Blasius’ resistance formula for straight pipes,

0 0.250.316 Ref   (turbulent flow) (6)

1.5. Heat transfer

As regards heat transfer, here and in the following the classical definition of the local Nusselt number
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for the inner (tube) side will be used:

 
2

Nu w

b w

q a
T T





(7)

where qw is the local wall heat flux,  is the fluid’s thermal conductivity, Tb is the bulk fluid

temperature and Tw is the wall temperature (which is uniform in the present simulations). In previous

work [15], a systematic computational study of heat transfer in curved pipes in the fully turb ulent

range was carried out. The study showed that an excellent reduction of the azimuthally averaged

Nusselt numberNucan be obtained by applying the Pethukov momentum-heat transfer analogy [16]

to curved pipes,

 
 

0

0 2/3

Pr Re /8
Nu

1.07 12.7 /8 Pr 1

f

f


  
(8)

and using Ito’s formula, Eq. (5), for 0f . It was shown that this approach is by far superior to any

power–law dependence. For Pr1, Eq. (8) approximately reduces to the Reynolds analogy Nu=Re

0f /8. In the turbulent range, substituting Eq. (5) for 0f into Eq. (8) written for Pr1 yields

Nu Nu Desp K   , where Nu sp is the average Nusselt number in a straight pipe at the same

Reynolds number and K is a constant. Thus, the influence of curvature on heat transfer appears as an

additive correction, proportional to the Dean number, to the straight pipe Nusselt number.

1.6. Recent studies

Numerical simulations of incompressible turbulent flow in helical and curved pipes are presented by

Friedrich and co-workers [17-18]. The authors numerically solve the Navier-Stokes equations written

in orthogonal helical coordinates [1] and compare toroidal and helical pipe results for Re5600

(Re230) and = 0.1. In a further paper [19] the same research group present the expression of the

Reynolds-stress balance equations in orthogonal helical coordinates. Although straight pipes would be

in the turbulent regime at this Reynolds number, all the above transition criteria, Eqs. (1)-(3), predict

that curved pipes with = 0.1 are in the laminar regime. Our previous simulations [9], conducted for

the same curvature and Reynolds number, predicted a quasi-periodic flow characterized by the
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presence of travelling waves, in agreement also with the experimental findings of Webster and

Humphrey [20]. This latter regime is only apparently chaotic because it exhibits two incommensurate

frequencies so that the temporal records of the various flow quantities do not exhibit any obvious

periodicity. The classical statistical approach used for turbulent flow, based on the computation of the

hierarchy of moments (averages and Reynolds stresses), is clearly inadequate in this case.

2. MODEL AND METHODS

2.1. Numerical methods

The geometry simulated was a torus with no slip conditions at the wall, as shown in Fig. 1. A constant

source term ps in the axial momentum equation was adopted as the driving force which balances

frictional pressure losses. This is equivalent to imposing the equilibrium wall shear stress

0 ( / 2)w sa p and thus the equilibrium friction velocity 0 0 /wu   .

As thermal boundary condition a uniform wall temperature Tw was imposed. In order to maintain a

steady bulk-to-wall temperature difference, a local energy source term was applied to balance, at each

time step, the integrated wall heat flux; due to the definition of the Nusselt number, Eq. (7), based on

the bulk temperature Tb, this term must be proportional to the instantaneous and local axial velocity.

Using this treatment, the fluid energy content, and thus the bulk temperature, remain constant during

the simulation and statistically fully developed conditions are obtained. The Prandtl number was fixed

to 0.86 in all cases, simulating water at 500 K and 60 bar.

For the numerical simulations presented in this paper, the ANSYS-CFX11™ code [21] was used,

which is based on a finite-volume coupled algebraic multigrid solver. Hexahedral control volumes

were used, with the central difference scheme for the advection terms and a second-order backward

Euler time stepping scheme.

2.2. Computational mesh

The mesh is multi-block structured, and is characterized by the parameters NRAD and Nas shown in

Fig. 2. In the present work the values adopted were NRAD=46, N=24 and a geometric refinement was
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introduced at the wall, with a maximum/minimum cell size ratio of 4.7 in the radial direction. With

these choices, the cross section was resolved by about 11 200 volumes, and the first near-wall grid

point was well within the viscous sublayer (y+1) at Re14 000. In the axial direction the domain was

discretized by 1024 cells for =0.1 and by 300 cells for =0.3 and for the straight pipe; this led to an

overall number of cells of 11.5106 for the smaller curvature torus (=0.1) and of 3.4106 for =0.3 and

for the straight pipe. For this latter case, the domain had an extension of 10 pipe diameters in the axial

direction.

The Kolmogorov length scale 3 1/ 4( / )K   can be expressed for the present configuration as

 1/ 4/ Re ReK a    . The present mesh provides a resolution of 2.6K in the radial direction and

7-8 K in the axial direction. Taking account of near-wall grid refinement, these values are of the same

order as those usually adopted in Direct Numerical Simulation of turbulence, see for example Kim et

al. [22].

However, for curved pipes the above estimate is excessively conservative. In fact, in this case part

of the dissipation is not related to turbulence, but rather to the large scale secondary circulation: even

in the turbulent regime, a significant fraction of the pumping power provided to the system is spent to

maintain the Dean cells. The associated dissipation Dean can be roughly estimated by extrapolating

beyond its proper range of validity Ito’s resistance formula for 0
LAMf , Eq. (4), while the total

dissipation tot can be assumed to be proportional to the overall friction factor 0f computed by DNS.

This leads to an estimated turbulent dissipation  0 01 /eff tot Dean tot LAMf f       , and yields an

actual Kolmogorov length scale  1/ 40 01 /Keff K LAMf f 


  ; this latter quantity is 2-2.5 for the

present Reynolds number and curvatures. Keeping this increase in into account, the actual

resolution for curved pipes is higher than for the straight duct, i.e. K in the radial direction and

3.5K in the axial direction for both curvatures.

The time step was set to  200.8 / u for all cases; this time discretization is sufficient to capture

most of the turbulent variations, see Choi and Moin [23]. For the present axial grid, the above choice
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guarantees a Courant number less than 1 in all cases.

Zero velocity and uniform temperature initial conditions were set for all the numerical

simulations. Instabilities were spontaneously triggered by small numerical fluctuations due to

truncation and round-off errors. The time necessary to achieve statistically steady conditions was

about 15 LETOT’s 0/a u in all cases; 15 further LETOT’s were simulated in order to compute flow

statistics.

3. PRELIMINARY RESULTS AND VALIDATION

3.1. Comparison with literature results for straight pipes

The computational method was firstly validated for straight pipes, where a larger amount of

computational and experimental data are available, and a higher turbulence level is expected with

respect to curved pipes at the same Reynolds number. Toonder and Nieuwstadt [2 4] published

experimental data on turbulent flow in straight pipes for Re=4900, 10 000, 17 800, and 24 000. The

global friction coefficient computed by the authors is in agreement with the Blasius resistance

formula, Eq. (6); for Re=14 400, the present DNS computation provides 0f =0.0284, against values of

0.0288 from Eq. (6) and 0.0289 from interpolation of the experimental data in [24]. The average

Nusselt number Nuobtained in the present DNS is 44.3, very close to the value of 44.8 obtained by

applying the Pethukov analogy, Eq. (8).

Fig. 3 shows a comparison of the time-averaged axial velocity profile (expressed in wall units)

between the present DNS and the experimental data in [24] obtained for Re=17 800. The “law of the

wall”, written in its high-Reynolds number form, is also reported. The DNS results slightly

overestimate the experimental data and the law of the wall in the region y+20200, which is partly

explained by the lower Reynolds number of the present DNS. For the same reason, the centreline

corresponds to different values of y+ in the experiments and in the simulations. On the whole, the

present results can be regarded as satisfactory, showing that the unresolved scales of turbulence play

only a minor role.
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3.2. Comparison with literature results for curved pipes

As regards curved pipes, no DNS or experimental data are available at Re14 000. Comparisons have

been carried out with the numerical simulations presented in [17, 18] by Friedrich and co-workers for

=0.1 and Re5632 (Re230). This case and the complex physical phenomenology involved have

been fully discussed in reference [9]. Comparison is made here on the time-averaged fields. Friedrich

and co-workers simulated a tract of the toroidal pipe 7.5 diameters in length, whereas in the present

simulations the computational domain included the whole torus.

Fig. 4(a) shows the dimensionless axial velocity Us=us/uav as a function of the dimensionless

radial coordinate r/a along the equatorial line IO, from the inner wall (r/a=-1) to the outer wall

(r/a=1), and along the vertical midline DU , from the bottom wall (r/a=-1) to the top wall (r/a=1). In

the latter case the problem’s symmetry (in the time averages) with respect to the torus equatorial

midplane is evident. Symbols denote the experimental results obtained by Webster and Humphrey

[20] for the same Reynolds number but a different curvature (=5.510-2). The agreement is very good

with the numerical simulations and fair with the experimental data, despite the difference in curvature.

It should be noticed that the radial gradient of the axial velocity in Fig. 4(a), once made dimensionless

by uav/a, is0.75, higher than the value that would be characteristic of a rigid body rotation. Thus a

real flow in a curved channel shows a progressive sliding of the fluid layers from the I to the O sides,

with the outer fluid overcoming the inner fluid.

Fig. 4(b) shows a comparison for the mean profile of the dimensionless azimuthal velocity

U=u/uav along the DU line, exhibiting characteristic near-wall peaks in the secondary (Dean)

circulation boundary layer; the agreement with the computational results in [17, 18] is fully

satisfactory also for this quantity.

4. RESULTS AND DISCUSSION

4.1. Range of parameters explored

Table 1 summarizes the three test cases presented in this paper. They cover three values of the

curvature, i.e.=0 (straight pipe), 0.1 and 0.3, while the Reynolds number is about 14 000 in all cases.

The three test cases are denoted by D1C for =0.1, D3C for =0.3 and D0C for the straight pipe. The
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friction and bulk Reynolds numbers Re, Re are provided in Table 1; for comparison with other

studies, the Dean number De, as defined in section 1, is also reported. The equilibrium friction

coefficient 0f can be computed simply as  20 32 Re / Ref  ; the corresponding values 0
corrf

provided by the Blasius or Ito correlations, Eqs. (6) or (5), are included for comparison purposes.

Finally,Nuis the Nusselt number computed by DNS while NuP is that predicted by the Petukhov

analogy, Eq. (8), on the basis of the above values of 0f .

4.2. Core inviscid balances

Fig. 5 shows maps of the time-averaged axial velocity and temperature in the cross section for cases

D1C and D3C. The axial velocity us is made dimensionless as Us = us/uav; the temperature T is made

dimensionless as = (T-Tw)/(Tb-Tw), so that it is 0 at the wall while its bulk value is 1. A large-scale

stratification along the horizontal direction , i.e. along the radius of the torus, is clearly visible for both

curvatures. The shape of the iso-lines reflects also the presence of the secondary Dean circulation in

the plane of the section; in fact, iso-lines are distorted by the secondary, inward-flowing, current in the

upper and lower wall boundary layers and in the proximity of the Dean vortex centres in the inner side

region.

The horizontal stratification can be better evidenced by looking at the distributions of

dimensionless velocity and temperature along the IO equatorial midline, reported in Fig. 6(a). For the

straight pipe (case D0C) a clear symmetric behaviour can be observed, indicating a pure radial

dependence, whereas, for curved pipes, all profiles in the core region collapse on a similar roughly

linear behaviour characterized (in dimensionless form) by a slope of 0.75, regardless of the curvature

value. As the curvature increases, only a moderate flattening of the profiles of Us and near the outer

side can be observed (the reasons for this behaviour will be discussed in section 4.4).

The behaviour of the axial velocity us in the core region can be related to that of the radial velocity

urp along the radial coordinate rp which starts from the torus axis by an inviscid approximation of the

axial momentum equation. By neglecting vertical velocities and observing that |us/c|«|us/rp|, this can

be approximately written as:
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s s
rp

p

u p
u

r 





(9)

Observing that   0 2/ / 2 / 2s avp p s f u a  and using dimensionless variables Urp= urp/uav

and Rp =rp/a, this can also be written as:

0

4
s

p rp

U f
R U





(10)

This balance expresses the basic physical mechanism that shifts the axial velocity maximum towards

the outer wall in a curved pipe.

Fig. 6(b) shows the profile of the dimensionless radial velocity Urp along the I0 line. In the core

region this quantity oscillates around 0.01, yielding, according to Eq. (10) and to the values of 0f in

Table 1, / 1s pU R   . The relative maxima and minima of Urp in Fig. 6(b) correspond to the minima

and maxima in the slope of the velocity profiles in Fig. 6(a), as predicted by Eq. (10).

Similarly, the scale of the secondary motion can be estimated from a simple balance between

centrifugal and inertial force in the cross section. By applying the work-kinetic energy theorem, the

work per unit mass done by the mean centrifugal force 2 /avu c equals the kinetic energy per unit mass

of the secondary flow:

2
2av sec
sec

av

u u
a u

c u
   (11)

Here, Usec=usec/uav can be identified with the dimensionless velocity of the inward-flowing secondary

flow boundary layers of dimensionless thickness S = s/a. Since the time-averaged secondary flow in

the cross-section represents a closed circulation and a proper stream function can be defined for it, the

dimensionless radial velocity Urp can be obtained by a mass balance condition:

rp sec rpu a u s U S    (12)

This allows one to re-write the momentum balance in Eq. (10) as:

0 / 4s

p

U f
R S 





(13)

By observing that the slope of the profiles in the core region, Fig. 6(a), is a constant of the order of 1
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regardless of the Reynolds number and the curvature, the conclusion is that the dimensionless

thickness S of the secondary boundary layer must be close to  0 / 4 /f , which is confirmed by

the numerical simulations.

By applying the same inviscid hypothesis to the radial momentum equation, the following relation

between the dimensionless quantities  2/ avP p u , Rp and Us is obtained:

2
s

p p

UP
R R





(14)

with the pressure gradient balancing the centrifugal force. Fig. 7(a) shows the profile of the ratio

  2 / / /s p pU R P R  along the IO line. This ratio is O(1) from r=-0.75 to r=0.75, i.e. in the core

region, confirming the validity of the inviscid balance hypothesis. Therefore, at least for the present

values of Re, both the viscous and the turbulent stresses are globally negligible in the core region,

where inertia and pressure forces dominate; turbulence, if present, is confined to the near -wall layers.

As a consequence of the momentum-heat transfer analogy discussed above, for Pr1

dimensionless axial velocity and temperature exhibit in the core region the same roughly linear profile

regardless of the curvature and of the Reynolds number, see Fig. 6(a). Therefore, the pressure gradient

is tied both to the dimensionless velocity and to the thermal stratification, i.e.

2 2/ / /p s p pP R U R R    . Observing that, at the centre of the section, Us1, it follows that the

order of magnitude of the radial pressure gradient / pP R  is , and therefore it is higher for the

higher curvatures.

By integrating the inviscid balance in Eq. (14), it can be shown that, in the core region and for

«1, the dimensionless pressure has the analytic expression

2
3 2

3
P b

R bR R

   (15)

where b is the slope of the velocity profile in the core and R=Rp-1/. This is valid both for laminar

stationary flow and for the time-averaged field in unsteady laminar flow [9] and turbulent flow.

Results for this latter condition (cases D1C and D3C) are shown in Fig. 7(b), where the time-averaged

profiles P/are compared with Eq. (15). The agreement is better around R=0, where the inviscid
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balance is more closely valid.

4.3. Near-wall behaviour

Friction

Fig. 8 shows the time-averaged azimuthal profiles of the local wall shear stress w, normalized by the

equilibrium value 0
w . The profiles are almost curvature-independent and exhibit a monotonic and

approximately linear behaviour from =-60° to =60°, i.e. in the secondary, inward flowing, boundary

layers. The wall shear stress decreases from the outer region (>0) to the inner region (<0), in

correspondance with the thickening of the secondary flow boundary layers; a local minimum is

present in the inner region at the location in which the secondary flow boundary layer detaches from

the wall and enters the Dean vortex.

Figs. 9 (a) to (c) show near-wall profiles of the the axial velocity su as a function of y+ at

different angles. Velocity and distance from the wall are normalized by the local friction velocity

/wu   and by the local wall length scale /u , respectively. With this normalization, velocity

profiles follow well the linear law in the viscous sublayer y+<10. All profiles show the absence of a

logarithmic region at any angle for both curvatures (straight pipe profiles are also reported for

comparison purposes). For =0°, Fig. 9(a), the plateau in the core region, observed both for D1C and

D3C, reflects the velocity stratification in the IO direction, see Fig. 5. For =-45°, Fig. 9(b), the most

relevant feature is the influence of the Dean vortex which stretches the iso-lines and determines a local

velocity minimum at about y+100. Fig. 9(c) shows the profiles for =90°, i.e. along the IO

direction. The very high value of the axial velocity ( 35su ) in the centre of the duct for =-90° is

due to the low value of the wall shear stress in the region =-90°±20° of the inner wall side.

Heat Transfer

Fig. 10 shows the time-averaged azimuthal profiles of the local wall heat flux qw normalized by its

overall average value qw. The profile for the lower curvature =0.1, case D1C, exhibits a monotonic

and approximately linear behaviour from =-60° to =60°, like that of the wall shear stress in Fig. 8.
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For the higher curvature =0.3, case D3C, the behaviour is not linear and tends to flatten in the outer

region >0. The wall heat flux decreases from the outer region (>0) to the inner region (<0), in

correspondence with the thickening of the secondary flow boundary layer. A local minimum is present

in the inner region for D1C at the detachment point (-70°).

Figs. 11 (a) to (c) show the temperature profiles  wT T T T
  as functions of y+ at different

angular locations around the wall. Temperature is normalized with respect to the local wall

temperature scale  w pT q c u  . With this normalization, all profiles follow well the linear law in

the viscous/conductive sublayer y+<10. The behaviour at different angles is similar to that of the

axial velocity in Figs. 9 (a)-(c), and similar considerations hold.

Fig. 12 shows the local similarity quantity  8 Nu/ Re Pr f as a function of the azimuthal

angle ,  24 / / 2w avf u  being the local Darcy friction coefficient. This quantity would be

identically 1 if the Reynolds analogy held on a local basis. For Pr1, this latter analogy was shown to

apply well to the azimuthal averages for turbulent flows in straight and curved pipes [15] on the basis

of RANS simulations. Fig. 12 shows that the analogy is confirmed for both curvatures also by the

present DNS results as regards the azimuthally averaged quantities, since  oscillates around 1. It

approximately maintains its validity also locally for the lower curvature case D1C, with an error of

less than 15%. On the contrary, for the higher curvature case D3C the error is more than 30% both on

the inner and the outer regions of the wall, reflecting the different behaviour of the local wall shear

stress, Fig. 8, and of the local heat flux, Fig. 10.

4.4. Turbulence and statistics

Overview

Fig. 13 shows the instantaneous distribution of the quantity  2 2 / 2Q   S in the generic cross

section for cases D0C, D1C and D3C. Here, and S are the in-plane parts of the vorticity and strain

rate tensors, respectively; the positive regions of Q define vortices, and (unlike the vorticity) Q goes to

zero at the walls, making graphical representations clear.
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The different spatial structure of turbulence is clearly evidenced by the comparison of the three

pictures. D0C reveals the classical presence of vortices mainly located at a certain distance from the

wall, but still present well within the core region which thus appears to be fully turbulent; obviously,

because of symmetry, there is not a preferred azimuthal direction. Both D1C and D3C are

characterized by a core region free from small-scale vortical structures. Turbulent vortices are mainly

located along the secondary flow boundary layers close to the upper and lower regions of the wall, and

in the inner region close to the centres of circulation of the time-averaged Dean vortices, see below.

For D3C an unstable fully turbulent region is present also near the outer region of the wall, where the

secondary flow moves against an adverse (destabilizing) radial pressure gradient which scales with 

as shown by Eq. (15).

Fig. 14 depicts the time-averaged secondary flow for cases D1C (a) and D3C (b) by showing

vector plots in the upper half of the section and streamlines in its lower half. A reference vector of

length uav is reported. Although both cases exhibit instantaneous lack of symmetry with respect to the

equatorial midplane, see Fig. 13, in the average flow symmetry is recovered. For both cases, Dean

vortices are clearly recognizable in the time averaged flow even if the instantaneous flow field does

not show them, see Figs. 13 (b),(c). The Dean vortices are larger, but less intense, for the lower

curvature (=0.1). With reference to, say, the upper half of the cross section, the centre of circulation

is located, as expected, near the inner side of the wall at -60°, and the secondary flow boundary

layer flows in the counter-clockwise direction, driven by the pressure gradient; as the thickness of this

boundary layer increases, both the wall shear stress and the Nusselt number decrease, see Figs. 8 and

10.

For D3C, the time-averaged flow field reveals also a couple of secondary counter-rotating vortices

in the unstable outer-side region, see Fig. 14(b) and enhanced inset. This may be a reminiscence of the

four-vortex solutions found by Dennis and Ng [25] and by Yanase et al . [26] for laminar flow in

curved circular pipes. However, in the present simulations such outer-side vortices only emerge as

time-averages of a turbulent flow. According to Yanase et al. [26], in steady laminar flow four-vortex

solutions can exist only for De>3184; this value is outside the range considered in our previous work

[6], where, in fact, such solutions were not observed. The above counter-rotating vortices, although
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weak with respect to the Dean circulation, are clearly responsible for the negative values of the radial

velocity component observed in Fig. 6(b) for 0.5 < r/a < 0.8, and correspond to a centripetal

secondary flow along the equatorial midplane near the outer wall which, in its turn, seems to be

responsible for the wedge shape of D3C isotherms in Fig. 5 and for the plateau exhibited in the outer

region by the local wall heat flux distribution for the same curvature, Fig. 10.

Reynolds stresses

Two-dimensional maps of normal RMS velocity fluctuations for the curved-pipe cases D1C and D3C

are shown in Fig. 15. Fluctuations are scaled by 0u . The same color key is used for the three

components so as to evidence their relative intensity. Although the velocity of the secondary

circulation is only a small fraction  O  of that of the main flow, it influences deeply the two-

dimensional structure of the turbulence and the location of the highest turbulence regions. For both

curved geometries, the axial velocity fluctuation gives the main contribution to the turbulent kinetic

energy, but it is particularly high (>1.5) only in specific regions (close to the O side, along the edge of

the Dean vortices and in the secondary flow boundary layer). This behaviour reflects the link of the

main axial flow with the secondary circulation, mainly via the continuity equation. The radial

fluctuating velocity is particularly high in the unstable region close to the O side and in the Dean

vortex centres; especially for the higher curvature case D3C, this radial component contributes

significantly to the turbulent kinetic energy in the outer region, where it reaches values >1.1. The

azimuthal fluctuating component contributes to the turbulent kinetic energy mainly in the secondary

flow boundary layer and in the Dean vortex regions in case D1C, whereas it is particularly significant

in the proximity of the O side in case D3C. On the whole, the distributions of the turbulence intensity

are markedly different for the two curvatures. In particular, for case D1C (=0.1) significant

fluctuations are present in the core region , where they are associated with the instability of the two

Dean vortices; on the contrary, in case D3C (=0.3) fluctuations are more intense than in case D1C,

but they are mainly concentrated in a near-wall annulus while the core flow is basically steady.

Fig. 16 shows sinilar maps for the Reynolds shear stresses, scaled by 0
w , for the curved pipe cases
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D1C and D3C. All plots are reported with the same scale from -0.6 to 0.6 to evidence the relative

weights of the components. The component rs is negligible in the whole section, except in the Dean

vortex regions where it reaches values 0.3-0.4 and in the instability region close to the O side; this

latter is particularly important for the higher curvature case D3C. The s component is the dominant

Reynolds stress in the secondary flow boundary layer and in the Dean vortex regions, where it reaches

values >0.6. Ther component is negligible in the whole section.

Reynolds fluxes

Fig. 17 illustrates the distribution of RMS fluctuating temperature and turbulent (Reynolds) heat

fluxes in the generic cross section for cases D1C and D3C. Here, fluctuating temperatures are

expressed in wall units as RMST  , i.e., they are made dimensionless by  0 0/w pT q c u  . Similarly,

turbulent fluxes ' '
p ic u T are expressed in thermal wall units as ' '

iu T


, i.e., they are scaled by

0 0
w pq c u T  .

The distributions of RMST  are markedly different for the two curvatures and roughly mimic those

of the fluctuating velocities. In particular, for case D1C (=0.1) high temperature fluctuations exist not

only near the O side and in the thin secondary flow boundary layers, but also in the core region, where

they are associated with the convective effects of the flapping of the Dean vortices. In case D3C

(=0.3), temperature fluctuations are more intense than in case D1C, but they are mainly concentrated

in the near-wall regions while the core temperature is basically steady. Similar remarks hold for the

distribution of the turbulent (Reynolds) heat fluxes, shown as vector plots of the in-plane components

' '
ru T


, ' 'u T


. For D3C, the highest values of secondary Reynolds flux are reached in the outer region

of the secondary flow boundary layer at 45°-60°, due to the high turbulent activity already noticed

in the instantaneous map of Q for D3C, see Fig. 13. Keeping in mind the mean temperature

distribution of Fig. 5, which showed a global stratification in the IO direction, it should be noticed that

the secondary Reynolds flux vector in the outer region is almost everywhere counter-gradient, i.e.

points from lower to higher mean temperatures. Therefore, it could not be predicted by eddy
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viscosity/eddy diffusivity turbulence models.

5. CONCLUSIONS

Direct Numerical Simulation of fully turbulent flow and heat transfer in toroidal pipes was performed

for Re14 000 and Pr=0.86. Three different curvatures were examined, i.e. =0, 0.1 and 0.3, where

=0 corresponds to the limiting case of a straight pipe.

Time–averaged results showed the presence of a (secondary) Dean circulation which leads to a

stratification of axial velocity and temperature in the torus radial direction. In the core region, the

radial gradient of the axial velocity was found to be O(uav/a); the radial pressure gradient was found to

scale with the curvature, and the thickness of the secondary flow boundary layer with 0 /f . All

these findings were satisfactorily explained by a simple inviscid approximation of the momentum

equations.

Although the ratio of secondary circulation to main (axial) flow is of the order of <1, the

secondary flow strongly influences the structure of turbulence. In fact, near-wall profiles of velocity

and temperature show the absence of a logarithmic region for curved pipes, and both the wall shear

stress and the Nusselt number exhibit a strong dependence on the azimuthal angle. The analogy

between heat and momentum transfer in curved pipes, demonstrated in previous work [15], was

confirmed on the averages, but it was disconfirmed on a local basis, especially for the higher

curvature.

With respect to the straight pipe, turbulent fluctuations in curved pipes were confined to a thinner

near-wall layer and were mainly concentrated in the secondary flow boundary layer, at the edge of the

Dean vortices and in the region close to the O side, characterized by an adverse pressure gradient with

respect to the radial secondary flow. Significant fluctuations in the core region were found in the

lower curvature case (=0.1), but not in the case =0.3 which exhibited a basically steady core. The

outer portion of the secondary flow boundary layers was also characterized by a counter-gradient

transport of heat by turbulent (Reynolds) fluxes.

In the higher curvature case=0.3, the time-averaged flow exhibited a couple of small secondary
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vortices located near the outer wall and reminiscent of the 4-vortex solutions previously found in

laminar flow at sufficiently high Dean numbers. Although relatively weak with respect to the Dean

circulation, these permanent structures affected temperature and wall heat flux distributions

considerably.

As in all companion reports on the same subject, it is worth noting that, although the main

interest is in finite-pitch helical coils of the kind used in heat exchangers, and particularly in the steam

generators for the IRIS reactor, results obtained for zero pitch (toroidal) pipes are of great relevance

and help a better understanding of the role of Reynolds number and curvature to be obtained without

the extra complexity introduced by an additional parameter (torsion). Of course, this is possible

because a large bulk of experimental and computational results presented in the last decades have

shown that, within certain limits, coil torsion, which differentiates a helical pipe from a toroidal one,

has only a higher order effect on flow features, so that a moderate torsion does not significantly affect

global quantities such as the friction factor and the Nusselt number, nor the critical Reynolds numbers

for flow regime transitions. For example, in their experimental investigations for turbulent flow and

curvaturesranging from 0.026 and 0.088, Xin and Ebadian [27] did not observe any influence of the

coil pitch up to torsions of 0.8. Yamamoto et al. [28] conducted friction factor measurements for

high values of the curvature (>0.5) and showed that this quantity was negligibly affected by torsion

provided that a suitably defined torsional parameter =(/2)1/2*/(1+2)1/2 did not exceed 0.5, a

condition corresponding to highly stretched pipes. Their study suggests that, for lower curvatures, the

influence of torsion on the friction coefficient would be negligible at all pitches. Our own preliminary

computations based o RANS turbulence models have shown that, for curvatures typical of the IRIS

steam generators (0.02), increasing torsion from 0 to 0.3 (a value also typical of the IRIS SG’s)

led to a decrease of the friction coefficient f and of the mean Nusselt number Nu of only 2%, while a

further increase of to the very large value of 1 led to a decrease in f and Nu of 6-7% with respect to

a toroidal pipe.
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Table 1 - Overall results for the three test cases.

Quantity Symbol D0C D1C D3C

Curvature  0 0.1 0.3

Friction Reynolds number Re 429 480 525

Bulk Reynolds number Re 14 400 14 710 13 180

Dean number De 0 4652 7219

Friction coefficient, DNS 0f 2.8410 -2 3.3410-2 4.9710-2

Friction coefficient, Eq.(5) 0
corrf 2.7810 -2 3.6810-2 4.4310-2

Nusselt number, DNS Nu 44.3 52.3 65.7

Nusselt number, Eq. (8) NuP 43.1 58.9 64.1
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Fig. 1 Schematic representation of a toroidal pipe with its main geometrical parameters: a, tube
radius; c, coil radius. The inner (I), outer (O), downer(D) and upper(U) sides of the curved duct are

also indicated;  represents the azimuthal angle in the cross-section, measured clockwise looking

from upstream.
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Fig.2 Cross section of the multi-block structured computational mesh. The total number of cells in the

cross section is NSEC=4N(N+2 NRAD).
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Fig. 3 Comparison of the time-averaged axial velocity profile (expressed in wall units) for the straight

pipe between the present DNS and the experimental data of Toonder and Nieuwstadt obtained for

Re=17 800. The classical universal laws are also reported.
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Fig. 4 Comparison of the present results (solid line) with other computational results (broken line) and

experimental data (symbols): (a) Dimensionless mean axial velocity profile /s s avU u u against the

non-dimensional radius r/a, along the I0 line and along the DU line; (b): mean azimuthal velocity

profile / avU u u  along the DU line.
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Fig. 5 Dimensionless time-averaged solutions for cases D1C (left) and D3C (right): axial velocity

Us=us/uav (top row) and temperature =(T-Tw)/(Tb-Tw) (bottom row).
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Fig. 6 Dimensionless profiles along the I0 line for cases D0C, D1C and D3C: (a) axial velocity Us

and temperature ; (b) velocity along the radial torus direction Urp.
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Fig. 7 (a): ratio of the centrifugal force and radial pressure gradient along the I0 line for cases D1C

and D3C; (b): time-averaged profiles  2/ / /avP p u   for the same cases. The analytical

expression 2 3 2/ ( / 3)P b R bR R   , derived from an inviscid balance, is reported for a

dimensionless velocity slope b=3/4.
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Fig.8 Time-averaged azimuthal profiles of the local wall shearw stress normalized by the equilibrium

value 0
w , for cases D1C and D3C. The profiles are almost curvature-independent and exhibit a

monotonic approximately linear behaviour from =-60° to =60°, i.e. in the secondary boundary

layer.
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Fig. 9 Axial velocity profiles of su as a function of y+ at different angles: (a) =0°; (b) =±45°; (c)

=±90°. Velocity and distance from the wall are normalized with respect to the local friction velocity

u.
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Fig. 10 Time-averaged azimuthal profiles of the local wall heat flux qw normalized by the azimuthally-

averaged value qw, for cases D1C and D3C. The profile for the lower curvature case D1C, exhibits a

monotonic and approximately linear behaviour from =-60° to =60°.
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Fig. 11 Temperature profiles  wT T T T
  as function of y+ at different angles: (a) =0°; (b)

=±45°; (c) =±90°. Temperature is normalized with respect to the local wall temperature scale

 w pT q c u  .
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Fig. 12 Quantity  8 Nu / Re Prf  as a function of the azimuthal angle .
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Fig. 13 Instantaneous distribution of the quantity  2 2 / 2Q  S in the generic cross section

for cases D0C, D1C and D3C, scaled by  2
/avu a . Positive regions of Q identify vortices.
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Fig. 14 Time-averaged secondary vector plot in the upper half and streamlines in the lower half of the
cross section for cases D1C (a) and D3C (b). The enlarged inset evidences the secondary counter-

rotating vortex in the outer region for D3C. Reference vectors are reported beside the figures.
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Fig. 15 Dimensionless second-order statistics for cases D1C (top row) and D3C (bottom row): axial

velocity fluctuation sRMSu ; radial velocity fluctuation rRMSu ; azimuthal velocity fluctuation RMSu
 . All

quantities are scaled by 0u.
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Fig. 16 Cross-sectional contours of the Reynolds shear stresses for the curved pipe cases D1C and

D3C. Stresses are scaled by 0
w .
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Fig. 17 Dimensionless second-order statistics for cases D1C (left) and D3C (right): temperature

fluctuations RMST (top row) and vector plot of the turbulent (Reynolds) flux in the pipe section.

Temperature fluctuations are scaled by  0 0/w pT q c u  , while Reynolds fluxes are scaled by

0 0
w pq c u T  . Unitary reference vectors are shown.
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Rapporto preparato nel mese di Dicembre 2009


