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Sommario
E' stata sviluppata una tecnica originale denominata IVM (Immersed VolumeMethod) che consente di rappre-

sentare e simulare geometrie complesse stazionarie in codici termo-fluidodinamici comprimibili che operano

su griglie computazionali cartesiane non uniformi, con un approccio alle differenze finite ed una formulazione

sfalsata (staggered) delle variabili di campo. In particolare, le celle che tagliano (cut-cells) una superficie com-

plessa sono trattate con il metodo dei volumi finiti. L'approssimazione della geometria complessa permezzo di

un insieme di superfici triangolari e non di un singolo piano tangente garantisce una descrizione accurata della

geometria tridimensionale reale. Nella presente annualità la tecnica è stata notevolmente migliorata attraver-

so l'introduzione di una tecnica Moving Least Square per determinare i gradienti di velocità  per il calcolo degli

sforzi a parete nelle equazioni di trasporto della quantità di moto e per valutare, nel caso di combustione, il

gradiente di specie chimiche nei flussi diffusivi. Il metodo ha consentito di incrementare l'ordine di accuratezza

sulla superficie della geometria complessa rispetto ad un classico metodo Least Square. La robustezza e l'ac-

curatezza del metodo proposto sono state ampiamente dimostrate simulando con l'approccio LES ed il codice

HeaRT un flusso laminare che investe una sfera a vari numeri di Reynolds, un flusso turbolento che investe una

sfera sostenuta da un'asta (numero di Reynolds pari a 51500), ed una fiamma turbolenta premiscelata stechio-

metrica di aria e metano stabilizzata a valle di un corpo cubico (numero di Reynolds pari a 3200). I risultati

ottenuti sono stati confrontati con successo con i dati sperimentali disponibili in letteratura.
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1 Introduction

The development and diffusion of Large Eddy Simulation as a more and more common methodology applied

to a wide variety of turbulent flows has been possible due to the rapid increase in computational power. In

particular, accuracy, robustness, efficiency and handling of complex three-dimensional geometries are key re-

quirements for LES engineering applications. Numerical codes based on structured grids and finite difference

scheme with a staggered formulation of the transported variables may fulfill all these requirements. While

complex geometries are more naturally treated with unstructured grids, structured grids let a more simpli-

fied management of data coding and thus higher computational efficiency. Finite difference schemes, both

explicit [[1],[2]] and compact [[3]], are characterized by an aliasing error lower than other methods due to

their enhanced damping at high wavenumbers [[4],[5]] and thanks to some possible modified forms of the

non-linear advection terms, e.g., the skew-symmetric form [[4]]. The dispersive properties (and robustness)

of finite difference schemes are improved with respect to collocated schemes by adopting a staggered for-

mulation of variables [[3],[6]]. Besides, staggering naturally provides a fully conservative form of equations,

and in particular guarantees the conservation of total energy. Hence, within this outlined framework, an effi-

cient, robust and accurate technique to simulate complex geometries in structuredstaggered grids is required,

especially for compressible and reacting turbulent flows.

Many flow physical problems involve geometrical complexities with irregular boundaries that usually are not

aligned with the grid. If that is the case, the solid boundary will cut through this grid. Because the grid does

not conform to the solid boundary, imposing the boundary conditions will require to modify the governing

equations in the vicinity of the boundary.

Two major classes of methods are suitable for treating arbitrarily complex geometries with cartesian grids.

They distinguish on the basis of their approach to impose boundary conditions in the cells cut by the solid inter-

face. The first includes the classical Immersed Bounday (IB) methods where governing equations are modified

adding forcing terms to account for the embedded complex surface [[9],[10]]. These methods are attractive

because of their simplicity, but their major drawbacks are the occurrence of non-divergence free velocities in

incompressible flows and spurious unphysical pressure oscillations in compressible ones due to not satisfying

strictly conservation of mass, momentum and kinetic energy near the irregular boundaries [[11],[12]]. The

second class includes methods based on the so called cut-cell method (also called Cartesian grid methods)

introduced first by Clarke [[13]]. This approach requires truncating the Cartesian cells at the immersed boun-

dary to create new cells which conform to the shape of the complex surface. In this way, the advantage of

a Cartesian grid is retained for the standard, non-boundary cells and a more complex treatment is necessary

only for the boundary cells.

The cut-cell method is based on a finite-volume discretization of the flow equations in the cells cut by the

immersed boundary surface; the local mass and momentum conservation are satisfied. On a non-staggered

grid, the velocity and density (or equivalently pressure, energy or scalars) are collocated at the same nodes

and the geometry of the associated control volumes is also identical. With a staggered grid, the scalars' cell

and the cells associated to each of the three velocity components are at different locations and have different

shapes when they are cut by an embedded boundary. A cut cell scheme for a staggered grid must deal with

this extra complexity in a consistent manner. Another complication of the staggered approach involves the

calculation of convective fluxes, because different interpolation stencils are used for velocities and scalars.

For sharp-interface cartesian grid methods, the so called small cell problem causing numerical instability

[[14]] arises when finite difference or finite volume methods are applied to small-sized irregular cut grid cells.

The new volume elements created by the cutting procedure can bemany times smaller than the original uncut

cartesian cells. Their small volume can seriously increase the stiffness of the governing equations and can

5



Accordo di PROGRAMMAMSE-ENEA

lead to problems of numerical instability. Johansen and Colella [[15]] adopted a flux redistribution procedure.

Most notable is the cell merging technique used by Chung [[16],[17],[18]] that links small cells and adjacent

fluid cells to form master-slave pairs.

Very few cut cell methods for staggered grids have been reported in literature and implementations of cut-

cell based Cartesian grid methods for the compressible 3D Navier-Stokes equations on staggered grid have

never been presented to the best of authors’ knowledge. Kirkpatrick et al. [[17]] proposed a method for

representing curved boundaries as quadratic surfaces for the solution of the incompressible Navier-Stokes

equations on non-uniform staggered, three-dimensional cartesian grid. In the same article, it was also deve-

loped a cell-linkig method to overcome problems associated with the creation of small cells without adding

the complexities of cell-merging techniques. Meyer et al. [[19]] proposed a conservative, second-order accu-

rate Cartesian cut-cell method for incompressible Navier-Stokes equations in three-dimensional non uniform

staggered grids suitable for finite-volume discretization. To ensure numerical stability for small cells they fol-

lowed the conservative mixing procedure by Hu et al. [[20]]. Cheny et al. [[21]] proposed a new IB method

for incompressible viscous flows, based on the MAC method [[23]] for staggered not-uniform Cartesian grids

where the irregular boundary is sharply represented by its level-set function and flow variables are computed

in the cut cells and not interpolated. Their method, called the LS-STAG method, is based on the symmetry

preserving finite-volumemethod by Verstappen and Veldman [[24]], which has the ability to preserve the con-

servation properties (for total mass, momentum and kinetic energy). Seo et al. [[22]] proposed a method

for reducing spurious pressure oscillations in simulations of moving boundary problems with sharp-interface

immersed boundary methods, applying a cut-cell method to the solution of the Poisson equation. Schneiders

et al. developed an accurate moving boundary formulation for compressible flow based on the varying discre-

tization operators yielding a cut cell method which avoids unhysical oscillations due to discontinuities in the

spatial discretization operator near small cells [[25]].

The present authors tested the classical Immersed Boundary method in a staggered finite difference low-

Mach number in-house code to simulate premixed flames anchored by means of bluff-bodies having complex

geometries. However, those simulations experienced numerical instabilities in the Poisson equation solver

close to the cut-cells with high density gradients due to combustion. The same authors also applied the IB

method in a staggered finite difference compressible in-house code to simulate analogous reactive flows, ex-

periencing the impossibility to obtain a solution due to the divergence of the calculation. They also tried to

force the velocity on the body surface in an IB-manner and to simulatneously solve for scalars' equations: this

procedure resulted in a stable solution, but characterized by pressure waves unphysically released from the

body surface. Hence, the motivation for this work.

The purpose of this work is to present a new efficient, conservative, high-order accurate (up to third order)

Cartesian cut-cell method, called Immersed Volume Method (IVM) for the compressible Navier-Stokes equa-

tions solved by finite difference method on three-dimensional non-uniform staggered grids. This method is

suitable for the extension to solid/fluid heat conduction and to moving boundaries. The immersed boundary

is represented by means of triangulated surfaces (STL representation). In literature, the arbitrary curved or

irregular boundary is approximated (except for some cases in collocated grids [[26],[27]]) by means of a plane

in each cut cell. Unfortunately for LES, unless a very fine grid is employed, the representation of an irregu-

lar boundary (or shape) using a planar approximation is too crude, with the deleterious result that additional

errors are introduced into the flow solution in the vicinity of the irregular boundary. The full geometrical cha-

racteristics of the cut cells, with the intersecting surface described by polygons with different normals, are

identified in a preprocessor procedure and retained in flow solver calculations.

The IVMmethod solves exactly, by means of the finite volume method, all the flow variables in the cut cells

and links the velocities and energy fluxes to the thermodynamic variable changes overcoming in this way the

drawbacks of classical IB methods. The high-order fluxes calculated at the cut cells' faces are also adopted in

the finite difference Navier-Stokes discretization of the Cartesian adjacent cells layer (with at least one face in

contact with a cut cell) to match IVM method with the general finite difference code. In fact, since the values

of the fluid dynamic variables are stored at the centroid of the cut cell volume of fluid, by directly applying

a finite difference method to this second layer, would lead to an incorrect fluxes evaluation (different from

that calculated by IVM method) and then to numerical instabilities, due to the not fulfillment of conservation
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properties.

The flow variables are stored at the cut-cell volume centroid and, to ensure numerical stability for small

cells, a cell-merging/cell-linking method is adopted to form a master/slaves pair. The basic idea is to combine

several neighbouring cells together and to shift the original cut cells volume centroids to that of the merged

new cut cell [[18, 28, 29]].

The authors are currently working on an extension of the method to finite difference codes with order of

accuracy higher than two (explicit or implicit compact scheme) and heat conduction inside solid boundaries. A

general formulation to impose boundary conditions and calculate viscous and diffusive fluxes on the complex

cutting surface is presented without introducing ghost cells.

The paper is organized as follows. In Section 2 the governing equations within the LES framework are pre-

sented. In section 3 the procedures adopted for determining the geometrical characteristics of the cut cells are

prescribed. Section 4 presents the IVM discretization for the calculation of continuity, momentum and energy

convective and diffusive fluxes. Section 5 is devoted to some numerical tests on non-reactive/reactive flows

at low and high Reynolds numbers for assessing the accuracy and robustness of the IVM method.
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2 Governing Equations

In LES each turbulent field variable is decomposed into a resolved and a subgrid-scale part. In this work, the

spatial filtering operation is implicitly defined by the local grid cell size. Variables per unit volume are treated

using Reynolds decomposition, while Favre (density weighted) decomposition is used to describe quantities

per mass unit. The instantaneous small-scale fluctuations are removed by the filter, but their statistical effects

remain inside the unclosed terms representing the influence of the subgrid scales on the resolved ones. In this

article, a test deals with combustion to show the robustness of the suggested technique. Gaseous combustion

is governed by a set of transport equations expressing the conservation of mass, momentum and energy,

and by a thermodynamic equation of state describing the gas behaviour. For a mixture of Ns ideal gases

in local thermodynamic equilibrium but chemical nonequilibrium, the corresponding filtered field equations

(extended Navier−Stokes equations) are:

• Transport Equation of Mass

∂ρ

∂t
+

∂ρũi

∂xi
= 0. (2.1)

• Transport Equation of Momentum

∂(ρũj)

∂t
+

∂(ρũiũj + pδij)

∂xi
=

∂τ̃ij

∂xi
+

∂τ
sgs
ij

∂xi
(2.2)

• Transport Equation of Total Energy (internal + mechanical, E+K)

∂(ρ Ũ)

∂t
+

∂(ρũiŨ+ pũi)

∂xi
= −

∂(qi − ũjτij +H
sgs
i + q

sgs
i )

∂xi
(2.3)

• Transport Equation of theNs Species Mass Fractions

∂(ρ Ỹn)

∂t
+

∂(ρũjỸn)

∂xi
= −

∂

∂xi
(̃Jn,i + J̃

sgs
n,i ) +

˜̇ωn (2.4)

• Thermodynamic Equation of State

p = ρ

Ns∑
n=1

Ỹn

Wn
RuT̃ (2.5)

These equations must be coupled with the constitutive equations which describe the molecular transport. In

the above equations, t is the time variable, ρ the density, uj the velocities, τij the viscous stress tensor, Ũ the

total filtered energy per unit of mass, that is the sum of the filtered internal energy, ẽ, and the resolved kinetic

energy, 1/2 ũiũi, qi is the heat flux, p the pressure, T the temperature,Ru is the universal gas constant,Wn

the nth-species molecular weight, ω̇n is the production/destruction rate of species n, diffusing at velocity

Vi,n and resulting in a diffusive mass flux Jn = ρYnVn. The stress tensor and the heat flux are respectively:

τij = 2µ (S̃ij −
1

3
S̃kkδij) (2.6)
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qi = −k
∂T̃

∂xi
+ ρ

Ns∑
n=1

h̃nỸnṼi,n. (2.7)

In this equationsµ is themolecular viscosity and k is the termal conductivity. Kinetic theory is used to calculate

dynamic viscosity and thermal conductivity of individual species [[34]]. The mixture-average properties are

estimated by means of Wilke's formula with Bird's correction for viscosity [[35],[36]], and Mathur's expression

for thermal conductivity [[37]].

Eqn. 2.7, the first term is the heat transfer by conduction, modeled by Fourier's law, the second is the heat

transport due to molecular diffusion acting in multicomponent mixtures and driven by concentration gradien-

ts. The Hirschfelder and Curtiss approximate formula for mass diffusion Vn in a multicomponent mixture is

adopted, i.e.,

Jn = ρYnVn = −ρYnDn
∇Xn

Xn
= −ρ

Wn

Wmix
Dn∇Xn , (2.8)

where Xn = YnWmix/Wn and theDn is

Dn =
1− Yn∑Ns

j=1, j 6=n
Xj

Djn

. (2.9)

Djn being the binary diffusion coefficient. When inexact expressions for diffusion velocities are used (as

when using Hirschfelder's law), and in general when differential diffusion effects are considered, the constrain∑Ns

i=1 Ji =
∑Ns

i=1 ρYiVi = 0 is not necessarily satisfied. In this paper, to impose mass conservation, an arti-

ficial diffusion velocity Vc is subtracted from the flow velocity in the species transport equations [[32]]. This

velocity, assuming Hirschfelder's law holds, becomes:

Vc = −

Ns∑
n=1

Wn

Wmix
Dn∇Xn . (2.10)

In Eqn. 2.2, the subgrid stress tensor, τ
sgs
ij , is expressed through a Smagorinsky model:

τ
sgs
ij = −ρ

(
ũiuj − ũiũj

)
' 2CR(x, t)ρ∆

2Π
1
2
(
S̃ij −

1

3
ρq2δij

)
, (2.11)

where 1/3 ρq2 is the subgrid kinetic energy, S̃ij = 1/2
(
∂ũi/∂xj + ∂ũj/∂xi

)
is the filtered strain rate tensor,

Π1/2 =
√
2S̃ijS̃ij is its module,∆ = 3

√
Volume is the grid filter width, andCR is the constant of the subgrid

stress model, here dynamically computed. The unclosed subgrid reaction rates in the Eqn. (2.4), are modeled

using the Fractal Model FM, details of which can be found in previous works [[33]]. In Eqn. 2.3, the subgrid

energy fluxHsgs is modelled as µt/Prt
∂H̃
∂xi

, Prt being the turbulent Prandtl number here assumed 0.9, while

the subgrid heat transfer q
sgs
i as−(µt + µl)µt/k ∂T̃/∂xi.

In the transport equation of theNs Species Mass Fraction (Eqn. 2.4), the subgrid mass flux J̃
sgs
n,i is modelled

using a gradient assumption as µt/Sct∂Ỹn/∂xi, Sct being the turbulent Schmidt number, here assumed 0.7.

The finite difference code is second-order accurate. In the case of premixed reactive flows the convective

species and energy fluxes are computed adopting a third-order modified version of the advection upstream

splitting method (AUSM) to reduce spurious oscillations due to strong unresolved density gradients in the

flame front. Time-integration of Navier-Stokes equations (2.1-2.4) is performed by means of the fully explicit

third-order accurate TVD Runge-Kutta scheme of Shu and Osher [[39]].
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3 IVM method

Since momenta are located half a cell width from thermodynamic variables, four control volumes are defined

and associated to the three momenta and scalars (density, pressure, total energy, chemical species). Rather

than storing the flow variables at the original Cartesian cell center, the variables are collocated at the true

cut-cell volume centroid (that not always lies inside the fluid region) and the fluxes of these variables are

estimated at the area's centroids of the fluid faces bounding the cut-cell (if first order interpolator is used,

Gauss points in other cases). For each of the four field variable type, the relevant geometric characteristics

of the resulting cut volume of fluid polyhedron, resulting from the difference of the original structured cell

and the intersecting volume of the solid, has to be derived. The mass fluid volume centroid, the fluid volume

fraction, the wetted surface areas and centroids are then used to interpolate variables and to calculate the

fluxes required to solve the Navier-Stokes equations in the general finite volume approach.

3.1 Cut cell geometric properties evaluation

A triangulated surface mesh is used to represent the solid boundary surface for three dimensional problems

(see Fig. 3.1). The vertices and the positive normals (towards the fluid region) of these triangles are stored in a

StereoLithography file (STL). Computational cells are divided in three types: solid cells that are inside the solid

volume, fluid cells that lie completely in the fluid and cut cells that are intersected by the immersed boundary

surface (see Fig. 3.1).

In a first stage, after the production of the cartesian structured computational grid, a marker is assigned to

each vertex of the cartesian cell (the grid may not be uniform) that determines whether the vertex is inside

or outside the solid. A ray tracing procedure is applied in order to do this [[30]]. Referring to Fig. 3.1 a ray is

traced from a point P and the number of intersections with the solid triangulated surface is counted (A andB).
The point P lies inside the solid if the number of intersections is even, outside otherwise. Each computational

cell's face is divided into two triangles whose vertices may be fluid or solid points (see the black bullets in Fig.

3.2). For each cartesian cell face, the intersection points of the triangulated solid boundary surface (A-B-C-

D-E-F-G-H-A) with the two triangles of each face are evaluated by a fast triangle/triangle intersection routine

[[31]] and stored in a linking list associated to the computational cell face. The intersection points are ordered

to form a polyline (e.g., the connected blue points E-F-G-H in Fig. 3.2) that divides the face (I-L-M-N) into two

polygons respectively in the fluid (E-F-G-H-I-L-M polygon of Fig. 3.2) and the solid region (E-F-G-H-N polygon).

The wet polygon of each face (if exists) is triangularized by a two-dimensional Delaunay triangulation, where

the intersection polyline of each face is adopted as a constraint. These boolean operations are performed for

all the faces of the original Cartesian cells with at least one internal vertex. The faces' wet polygons form a

polyhedron that is closed by the surface of the immersed solid boundary ∂Γ internal to the computational

cartesian cell. In order to characterize this surface, for each intersecting STL triangle, its intersection points

with the cartesian face and its internal vertices (if they exist) are stored in a second ordered list associated to

the cell (e.g. the three polygons E-F-D, D-F-G-B-C and G-H-A-B in Fig. 3.2 belonging to different STL triangles).

Once the volume of fluid polyhedron is identified by its set of polygons, applying Gauss's divergence theorem,

the wet volume may be calculated for example as:

V =

∫
V

dV =

∫
∂B

x̂i · n̂dS , (3.1)

î and n̂ being the versor of the i − th direction and the normal surface versor, respectively, and ∂B the po-

lyhedron surface. Furthermore, the polyhedron fluid volume centroid coordinates xVi , which usually do not

10



Figura 3.1: A three-dimensional Cartesian grid illustrating the three types of cells in the cut-cell approach. The

red region (IVM = 1) denotes the fluid cells which lie entirely outside the solid boundary, whereas

the blue cells (IVM = −1) denote the solid cells which lie entirely inside the solid boundary. The

green cells (IVM = 0) correspond to the cut-cells which are intersected by the internal boundary.

Bottom: zoomed-in-view of the part of the immersed boundary region showing the computational

cartesian grid.
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Figura 3.2: Example of STL boundary surface representation and cut cell. Black line: cut structured cell; Blu

line: immersed boundary surface/cut cell intersection; gray line: immersed boundary surface

represented by triangulation; gray solid: internal solid part of the immersed boundary.

coincide with the volumetric center coordinates of the original square grid cell, can be calculated as

xVi =
1

V

∫
V

xi dV =
1

2V

∫
∂B

x2idA =
1

2V

Nf∑
j=1

∫
∂Bj

x2i dS, (3.2)

whereNf is the number of polyhedron's polygonal faces. The centroid coordinates xAi,j of the j− th face area

(``wetted`` or solid) are given by

xAi,j =
1

Aj

∫
Aj

xi dA =
1∑Nt,j

n=1An,j

Nt,j∑
n=1

xi,nAn (3.3)

Nt,j being the number of triangles andAn,j the area of the n− th triangle of the Delaunay triangulation.

The ``wetted`` and solid polyhedron's areas must be calculated with high precision since in the case of

uniform pressure p no source terms related to the pressure gradient are present in the three momentum

equations and then the following equation must be satisfied in the i− th coordinate direction:∫
∂B

p̂i · d̂A = p

∫
∂B

î · d̂A = 0 (3.4)

This means that, geometrically, the projection along a fixed direction of the signed wetted and solid surfaces

must be zero (in this work is at least ∼ 10−17m2 ). In classical cut cell methods, where the internal cutting

surface is approximated by a plane, this requirement is naturally fulfilled since the normal versor n̂ and the

area of the solid boundary surface S are calculated as:

n̂ = (
A+

x −A−
x

|S|
,
A+

y −A−
y

|S|
,
A+

z −A−
z

|S|
) (3.5)
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Figura 3.3: Example of cut cell geometric characteristics. Blue bullet: cut cell volume of fluid centroid; black

bullets: z-normal faces's centroids; green bullets: x-normal faces's centroids; red bullets: y-normal

faces's centroid; blue edges with bullets: original cartesian cell; grey surface with blue edges: sur-

face intersection of the immersed body with the cartesian cell; blue arrows: the normals of the

immersed surfaces.
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where |S| =
√
(A+

x −A−
x )2 + (A+

y −A−
y )2 + (A+

z −A−
z )2 and A±

i being the wetted areas on the positi-

ve/negative faces in the i − th direction. Figure 3.3 shows the volume of fluid centroid (cvof ) where field

variables are collocated, the six wetted areas' centroids, the internal boundary surfaces and their normals.

3.2 Small cell treatment

After calculating all geometric properties of the cut cells, the problem of removing small cut cells has to be

taken into account. In fact, the volume of fluid fraction V can be arbitrarily small compared with that of the

original cartesian grid cell. These small cell volumes increase the stiffness of the system of equations and

restrict the maximum time step that can be used in an explicit time stepping procedure. Special treatment of

such cells is necessary for numerical stability and several approaches have been proposed in literature: the

application of cell linking [[17]], cell merging [[22]], the adoption of a redistribution technique for the cell's

volumes [[20],[19]] and mixed approaches [[40]]

In this work, the solution of a combined cell-merging/cell-linking approach proposed by Hartmann et al.

[[40]] is adopted. The basic idea is to combine several neighbouring cells, named slave cells, together in a

newly combined larger cell. To implement this technique, we need first to determine which cells should be

merged. A cut cell is considered a slave cell when its volume fraction is less then one third of the original

Cartesian cell. Let ns be themean normal versor of the solid boundary surface, characterized byNp polygonal

surfaces (see Fig. 3.3):

ns =

∑Np

k=1Aknk∑Np

k=1Ak

(3.6)

Ak being the k − th polygonal surface with normal nk. The master cell is chosen in the i − th coordinate

direction maximizing the dot product n̂s·(±n̂i), i = 1, 2, 3 , n̂i being the versor of the i − th coordinate

direction. When multiple master cells are identified, the greatest is chosen. In the case that the master cell

m is a slave cell of another cell m?, both s and m become slave cells of m?. The cell volume Vm? and the

centroid xVm? of the combined master-slave(s) clusterm? are computed as:

Vm? = Vm +

Ns∑
k=1

Vsk (3.7)

xVm? =
xVmVm +

∑Ns

k=1 x
VskVsk

Vm?
(3.8)

A
j
m? =

Ns∑
k=1

(Aj
sk
) (3.9)

xA
j
m? =

xA
j
mA

j
m +

∑Ns

k=1(x
A

j
skA

j
sk)

A
j
m?

(3.10)

Ns being the number of slave cells associated to the master cellm, Vsk and xVsk the volume and the volume

centroid of the slave cell sk respectively, nki the versor of the i− th direction of connection between the slave

cell sk and the master cell m,A
j
sk the slave face area with normal in the j− th direction. The data are copied

to the slave cell(s) sk ∈ S and the master cell according to

xVm ← xVm+S (3.11)

xVsk ← xVm+S , ∀sk ∈ S

xA
j
m ← xA

j
m?

∂Γm ← ∂Γm+S

Vm ← Vm+S

Aj
m ← A

j
m? .
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In this way, all small cells, linked andmergedwith a suitablemaster cellm, are treated in the numericalmethod

as passive cells contributing to the balance equations only through fluxes exchange across their surface.

15



4 IVM method discretization

In this section, first we describe how performing high order least-squares reconstruction in each cut cell, next

we discuss boundary conditions enforcement and advective and diffusive flux calculation.

4.1 Least-Squares interface reconstruction

While fluxes evaluation is straightforward in structured grids, it becomes more difficult at cells cutted by so-

lid boundaries. In the proposed formulation, the least-squares method is adopted to obtain a discretization

scheme which is flexible in terms of the local cut cell volume topology and the shape of embedded boundaries

and conserves mean value in the control volumes. The cell interface values of the solution variables are found

using Taylor series expansion about the cell centroid ci of the volume i:

φINT
ci

(x) = φci
+

∂φ

∂x

∣∣∣∣∣
ci

∆x+
∂φ

∂y

∣∣∣∣∣
ci

∆y+
∂φ

∂z

∣∣∣∣∣
ci

∆z+
∂2φ

∂x2

∣∣∣∣∣
ci

∆x2 +
∂2φ

∂y2

∣∣∣∣∣
ci

∆y2 + (4.1)

+
∂2φ

∂z2

∣∣∣∣∣
ci

∆z2 +
∂2φ

∂x∂y

∣∣∣∣∣
ci

∆x∆y+
∂2φ

∂y∂z

∣∣∣∣∣
ci

∆y∆z+
∂2φ

∂x∂z

∣∣∣∣∣
ci

∆x∆z

with ∆x = x − xci
, ∆y = y − yci

, ∆z = z − zci
being the distances, along the three cartesian coordinates,

between the reconstruction point and the centroid ci where derivatives in Eqn. (4.1) are calculated. Obviou-

sly, if a first order reconstruction is required, only the first four terms must be retained in Eqn. (4.1). The

computational stencil of the least squares system, is constructed looking at the neighbouring control volumes

ensemble
{
Sj
}
i
(j = 1, ...,Ni) of the cut/cartesian cells (the small cut cells are excluded). The control volume

ensemble
{
Sj
}
i
must include a sufficient number of control volumes for the determination of the derivatives

in Eqn. (4.1). The minimum number of unknowns for the linear and quadratic reconstruction in 3D are 4 and

10 leading to a 2nd and 3rd order accuracy respectively. In practice, in this work, a maximum number of 20

points are used to construct the stencil of the least square method, imposing the conservation of mean in the

control volumes and boundary conditions. The conservation of the mean value within the control volume Vi

of the interpolating function φINT
ci

(x) requires that the following equation must be satisfied:

φi =
1

Vi

∫
Vi

φINT
ci

(x)dV. (4.2)

Substituting the Taylor series, Eqn. (4.1) in Eqn. (4.2), and collocating the mean value at the volume centroid,

gives [[41]]

0 =
∂φ

∂x

∣∣∣∣∣
ci

x+
∂φ

∂y

∣∣∣∣∣
ci

y+
∂φ

∂z

∣∣∣∣∣
ci

z+
∂2φ

∂x2

∣∣∣∣∣
ci

x2

2
+

∂2φ

∂y2

∣∣∣∣∣
ci

y2

2
+ (4.3)

∂2φ

∂z2

∣∣∣∣∣
ci

z2

2
+

∂2φ

∂x∂y

∣∣∣∣∣
ci

xy+
∂2φ

∂y∂z

∣∣∣∣∣
ci

yz+
∂2φ

∂x∂z

∣∣∣∣∣
ci

xz ,

with

xmynzpi =
1

Vi

∫
Vi

(x− xci
)m(y−yci

)n(z− zci
)p dV =

1

Vi

∫
∂Bi

(x− xci
)m+1

m+ 1
(y−yci

)n(z− zci
)pn̂dS

(4.4)
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that considering the expression of the centroid in Eqn. (3.2) reduces to calculate moments of the volume Vi

with respect to ci (using Gauss' theorem). If a first order reconstruction is adopted, and the mean value is

collocated at the volume of fluid centroid, the conservation of the mean condition is automatically satisfied

[[18]].

Computing themean value of the reconstructionφINT
ci

(x) in a volumeVj of the ensemble
{
Sj
}
i
, that forms

the compact stencil of the least square method, implies that:

φj = φi +
∂φ

∂x

∣∣∣∣
ci

[
1

Vi

∫
Vi

(x− xci
)dV

]
+

∂φ

∂y

∣∣∣∣
ci

[
1

Vi

∫
Vi

(y− yci
)dV

]
+

∂φ

∂z

∣∣∣∣
ci

[
1

Vi

∫
Vi

(z− zci
)dV

]
+

∂2φ

∂x2

∣∣∣∣
ci

[
1

Vi

∫
Vi

(x− xci
)2 dV

]
+

∂2φ

∂y2

∣∣∣∣
ci

[
1

Vi

∫
Vi

(y− yci
)2 dV

]
+

∂2φ

∂z2

∣∣∣∣
ci

[
1

Vi

∫
Vi

(z− zci
)2 dV

]
+

∂2φ

∂xy

∣∣∣∣
ci

[
1

Vi

∫
Vi

(x− xci
) (y− yci

)dV

]
+

∂2φ

∂xz

∣∣∣∣
ci

[
1

Vi

∫
Vi

(x− xci
) (z− zci

)dV

]
+

∂2φ

∂yz

∣∣∣∣
ci

[
1

Vi

∫
Vi

(y− yci
) (z− zci

)dV

]

(4.5)

Following the work of Gooch [[41]] in order to avoid the calculation of moments of each control volume Vj

with respect to ci, in Eqn. (4.5) x− xci
,y−yci

,z− zci
are replaced with (x− xcj

)+ (xcj
− xci

), (y−ycj
)+

(ycj
− yci

), (z− zcj
) + (zcj

− zci
), respectively. Hence,

φj = φi +
∂φ

∂x

∣∣∣∣∣
ci

x̂+
∂φ

∂y

∣∣∣∣∣
ci

ŷ+
∂φ

∂z

∣∣∣∣∣
ci

ẑ

+
∂2φ

∂x2

∣∣∣∣∣
ci

x̂2 +
∂2φ

∂y2

∣∣∣∣∣
ci

ŷ2 +
∂2φ

∂z2

∣∣∣∣∣
ci

ẑ2

+
∂2φ

∂x∂y

∣∣∣∣∣
ci

x̂y+
∂2φ

∂y∂z

∣∣∣∣∣
ci

ŷz+
∂2φ

∂x∂z

∣∣∣∣∣
ci

x̂z

(4.6)

with

̂xnymzp =
1

Vj

∫
Vj

(
(x− xcj

) + (xcj
− xci

)
)n(

(y− ycj
) + (ycj

− yci
)
)m

(
(z− zcj

) + (zcj
− zci

)
)p

dV

=

p∑
r=0

{
p!

r!(p− r)!
(zcj

− zci
)r

m∑
l=0

{
m!

l!(m− l)!
(ycj

− yci
)l

m∑
l=0

[ n!

k!(n− k)!
(xcj

− xci
)kxn−kym−lzp−r

]}}
(4.7)

The overdetermined system of equations (4.3,4.6) can be written in matrix form as

∆φ = Sdφ, (4.8)
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where

∆φ =



0

φ1 − φci

φ2 − φci

...

...

φNi
− φci

 (4.9)

S =



xi yi zi x2i y2
i z2i xyi yzi xzi

x̂1 ŷ1 ẑ1 x̂21 ŷ2
1 ẑ21 x̂y1 ŷz1 x̂z1

x̂2 ŷ2 ẑ2 x̂22 ŷ2
2 ẑ22 x̂y2 ŷz2 x̂z2

...

...

x̂Ni
ŷNi

ẑNi
x̂2Ni

ŷ2
Ni

ẑ2Ni
x̂yNi

ŷzNi
x̂zNi


(4.10)

dφ =
[

∂φ
∂x

∂φ
∂y

∂φ
∂z

∂2φ
∂x2

∂2φ
∂y2

∂2φ
∂z2

∂2φ
∂x∂y

∂2φ
∂y∂z

∂2φ
∂z∂x

]
. (4.11)

The system of equation (4.8) becomes:

(STS)−1ST∆φ = C∆φ = dφ (4.12)

where the C matrix has dimension (Ni + 1) x (Ni + 1), it contains only geometric constants, and so it may

be computed and stored in a preprocessing stage. Figure 4.1 shows, for a scalar centroid (black bullet), the

stencil used for the determination of the interpolation least square system (4.8). The red bullets, indicate the

Nb boundary points for the application of boundary conditions (see Eqn. 4.14 and Eqn. 4.15), while the blue

bullets and cubes are theNi cut cells and second layer centroids respectivelywhere scalar value are conserved.

4.2 Application of boundary conditions

Boundary conditions are imposed in Eqn. (4.8) by prescribing the values of a variable or its derivatives on spe-

cific auxiliary points of the boundary surface. Each point is created for the cut cell, by finding the intersection

point xib of the line passing through the volume of fluid centroid having the direction of the mean normal to

the solid surface ∂Γ . Given the mean normal of the boundary cutting surfaces Eqn. (3.6), if one of the normals

of the triangulated boundary surface (e.g., as in case of the edge of a cube intersecting a cartesian grid), forms

an angle greater then a fixed value (30◦ in this work), other boundary points are added as boundary constraints
(surface centroids). For example, the velocity no-slip condition for a non-moving body (a Dirichlet boundary

condition) is imposed at these auxiliary points xib bymeans ofφINT (xib) = φ(xib) = 0, ib = 1, ...,Nb (Nb

is the number of boundary points in the interpolation cloud) in the vector ∆φ of Eqn. (4.8). Since

φINT
ci

(xib) = φci
+

∂φ

∂x

∣∣∣∣∣
ci

∆xib +
∂φ

∂y

∣∣∣∣∣
ci

∆yib +
∂φ

∂z

∣∣∣∣∣
ci

∆zib +
∂2φ

∂x2

∣∣∣∣∣
ci

∆xib
2 +

∂2φ

∂y2

∣∣∣∣∣
ci

∆yib
2 + (4.13)

+
∂2φ

∂z2

∣∣∣∣∣
ci

∆zib
2 +

∂2φ

∂x∂y

∣∣∣∣∣
ci

∆xib∆yib +
∂2φ

∂y∂z

∣∣∣∣∣
ci

∆yib∆zib +
∂2φ

∂x∂z

∣∣∣∣∣
ci

∆xib∆zib ,
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Figura 4.1: Example of points cloud used for the interpolation of scalar variables at the black bullet location.

White line: STL surface triangulation; black line: original cartesian volume of the cut cell and its

boundary cutting surface; red bullets: surface boundary points; blue bullets: the surrounding vo-

lume of fluid centroids; blue cube: centroid of the second layer cells; cartesian edges: different

colour shades indicate cut cells forming master-slave pair (green and orange).
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with ∆xib = xib − xci
, ∆yib = yib − yci

, ∆zib = zib − zci
, the system (4.8) becomes

∆φ =



0

φ(x1b
) − φci

φ(x2b
) − φci

...

φ(xNb
) − φci

φNb+1 − φci

...

...

φNi
− φci


(4.14)

S =



xi yi zi x2i y2
i z2i xyi yzi xzi

∆x1b
∆y1b

∆z1b
∆x21b

∆y2
1b

∆z21b
∆x1b

∆y1b
∆y1b

∆z1b
∆x1b

∆z1b

∆x2b
∆y2b

∆z2b
∆x22b

∆y2
2b

∆z22b
∆x2b

∆y2b
∆y2b

∆z2b
∆x2b

∆z2b

...

∆xNb
∆yNb

∆zNb
∆x2Nb

∆y2
Nb

∆z2Nb
∆xNb

∆yNb
∆yNb

∆zNb
∆xNb

∆zNb

x̂1 ŷ1 ẑ1 x̂21 ŷ2
1 ẑ21 x̂y1 ŷz1 x̂z1

x̂2 ŷ2 ẑ2 x̂22 ŷ2
2 ẑ22 x̂y2 ŷz2 x̂z2

...

...

x̂Ni
ŷNi

ẑNi
x̂2Ni

ŷ2
Ni

ẑ2Ni
x̂yNi

ŷzNi
x̂zNi


(4.15)

The red and blue colors of the matrix coefficients in Eqns. (4.14) and (4.15) refers to the points showed in Fig.

4.1 representing boundary points and volume of fluid/cartesian cells centroids respectively.

After calculating the gradient of Eqn. 4.1 at a boundary point xib , multiplying it by the component of the

local normal direction nib , it is possible to evaluate the normal derivative and impose a Neumann boundary

condition
∂φ(xib)

∂n = gn(xib):

∇φINT
ci

(xib) · nib = (
∂φ

∂x

∣∣∣∣∣
ci

+
∂2φ

∂x2

∣∣∣∣∣
ci

∆xib +
∂2φ

∂x∂y

∣∣∣∣∣
ci

∆yib +
∂2φ

∂x∂z

∣∣∣∣∣
ci

∆xib)nibx + (4.16)

+(
∂φ

∂y

∣∣∣∣∣
ci

+
∂2φ

∂y2

∣∣∣∣∣
ci

∆yib +
∂2φ

∂x∂y

∣∣∣∣∣
ci

∆xib +
∂2φ

∂y∂z

∣∣∣∣∣
ci

∆zib)niby +

+(
∂φ

∂z

∣∣∣∣∣
ci

+
∂2φ

∂z2

∣∣∣∣∣
ci

∆zib +
∂2φ

∂y∂z

∣∣∣∣∣
ci

∆yib +
∂2φ

∂x∂z

∣∣∣∣∣
ci

∆xib)nibz = gn(xib)

In this case, the Least Square Matrix of the metric coefficients S becomes:

S =



xi yi zi x2i y2
i z2i xyi yzi xzi

nx1b
ny1b

nz1b
∆x1b

nx ∆y1b
ny ∆z1b

nz

...
... ∆x1b

nz + ∆z1b
nx

nx2b
ny2b

nz2b
∆x2b

nx ∆y2b
ny ∆z2b

nz

...
... ∆x2b

nz + ∆z2b
nx

... ... ...

nxNb
nyNb

nzNb
∆xNb

nx ∆yNb
ny ∆zNb

nz

...
... ∆xNb

nz + ∆zNb
nx

x̂1 ŷ1 ẑ1 x̂21 ŷ2
1 ẑ21

... ŷz1 x̂z1

x̂2 ŷ2 ẑ2 x̂22 ŷ2
2 ẑ22

... ŷz2 x̂z2
... ... ...

... ... ...

x̂Ni
ŷNi

ẑNi
x̂2Ni

ŷ2
Ni

ẑ2Ni

... ŷzNi
x̂zNi



(4.17)
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while the vector ∆φ is:

∆φ =



0

g(x1b
)

g(x2b
)

...

g(xNb
)

φNb+1 − φci

...

...

φNi
− φci


(4.18)

In this work, no slip boundary conditions for the three velocity components and Neumann boundary condi-

tions (
∂φ(xib)

∂n = 0) for density, energy and species mass fraction, are applied at boundary points (determined

as described in the initial section of this paragraph) , while Neumann boundary conditions are enforced at

Gauss boundary integration points for pressure.

4.3 Fluxes calculation

Integrating Eqns. (2.1-2.4) over the volume Vi of the cut cell and using the divergence theorem,

∂Q

∂t
=

1

Vi

∫
∂Bi

F · ndA+ S, (4.19)

where Q = [ρ, ρu, ρU, ρYi]
T is the vector of conserved variables, S = [0, 0, 0, ρω̇]T , F = Finv + Fv the flux

vector containing an inviscid part Finv and a viscous part Fv, and n the outward unit normal vector to the cut

cell surface dA.

4.3.1 Inviscid Fluxes calculation

The inviscid surface integral in Eqn. (4.19) is approximated as:

1

Vi

∫
∂Bi

Finv · ndA =
1

Vi

Nf∑
s=1

∫
∂As

Finv
ns

(QL,QR)dAs (4.20)

Here, Finv
ns

(QL,QR) represents the numerical convective flux in the direction normal to the faceAs, (ns being

the outword versor normal toAs face) as a function of the reconstructed solution QL/R on both sides ofAs.

The superscripts ′′R ′′ and ′′L ′′ refer to the spatial limit respectively on the outside and inside of the cut cell

Vi with respect to its face As. In particular QL represents the solution calculated on the face As using the

interpolation functionφINT
i in Vi, whileQ

R represents the reconstructed solution calculated onAs using the

interpolation function φINT
j in the neighbouring cell Vj (Vj cell may be a cut cell or a second layer cell).

Since the flux Finv
ns

(QL,QR) varies along the triangulated surface As, it must be evaluated at each Gauss

point xgs of the area As. The flux is formulated using a modified version of the advection upstream splitting

method (AUSM) [[42]]. In this method, the inviscid flux is split into a convective component and a pressure

term involving the Mach numberMgs = ugs/ags , ugs being the normal velocity component to the As at the

Gauss point, such that the numerical inviscid flux Fs(xgs), can be computed as

F(xgs) =
1

2

{
Mgs [f

L
gs

+ fRgs
] + |Mgs |[f

L
gs

− fRgs
]
}
+ pm

gs
(4.21)

where

Mgs =
1

2
(ML

gs
+MR

gs
) (4.22)
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and

f =


ρc

ρcu
c(ρU+ p)

cρYn

 .

ρ, c, u,U, Yi being density, sound velocity, velocity vector, total energy, species mass fraction respectively. The

pressure term pm
gs

is computed such that

pm
gs

=

{
pL
gs

[
1

2
+ χML

gs

]
+ pR

gs

[
1

2
− χMR

gs

]}
0

um

0

0

 , (4.23)

where a dissipative splitting at χ = 0.5 is used to dump spurious oscillations.

4.3.2 Viscous flux calculation

With the details of the gradient expression in mind (Eqn.4.16), viscous fluxes Fv in Eqn. 4.19 are now derived.

First, it is calculated the gradient at the centroid xAj of the faceAj (the gradient varies linearly inside each cut

cell) by means of the reconstruction functions φINT
i in Vi and φINT

j in the neighbouring cell Vj. The surface

gradient is computed as a distance weighted convex combination of cell center gradients, i.e.,

∇φ(xAj ) = wj∇φINT
i (xAj ) +wi∇φINT

j (xAj ), (4.24)

with

wi =
|xci−xAj |

|xci−xAj |+|xcj−xAj |

wj = 1−wi.
(4.25)

To compute wall shear stresses on the boundary surfaces of no-slip walls of a cut cell Vi, the components

of the stress tensor ø(xbi
) (i = 1, ...,Np) must be calculated at the cut cell's boundary face centroids. In the

general case of a boundary surface constituted byNp polygons with different normals (this is the case of high

curvature boundary surfaces immersed in a coarse cartesian grid), the classical expression of the viscous flux

integral related to the boundary surface in Eqns. (4.19)

1

Vi

∫
∂Bw

Fv · ndA =
1

Vi
ø(xc) · nA (4.26)

with xc being the centroid of the only approximating cutting surface, is substituted with:

1

Vi

∫
∂Bw

Fv · ndA =
1

Vi

Np∑
k=1

ø(xbk
) · nk dAk (4.27)

with ∂Bw the wall boundary surface of the cut cell Vi, nk the versor of k− th boundary polygonal surface, ø
the stress tensor calculated specifing velocity gradients∇uINT

x (x, y, z),∇uINT
y (x, y, z),∇uINT

z (x, y, z) and
dynamic viscosity at the k− th boundary surface centroids xbk

.

Due to the staggering, for each type of cut cell Vi (velocity or scalars) and for each of the 6 possible wetted

polyhedron' faces, the index of the corresponding neighbouring cell Vj is required to reconstruct the left and

right solutions. All the required indexes are stored in a pre-computed list (see Fig. 4.2), readily available

at runtime calculation. Considered a cut cell control volume associated to a certain quantity (e.g., density),

whenever quantities of different type (e.g., ρUz) are required to estimate the left state (i.e., from inside the cut
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Figura 4.2: Interpolation functions of ρUz used to calculate left and right states on density cut cell. Blue open

circles: density centroids; red circles: ρUz centroids; red dot-line grid: original cartesian ρUz grid;

blue line grid: original cartesian ρ grid; black line: boundary surface.

cell) on one of the six faces of the cell (e.g., that with normal z+), these quantities are interpolated according to

the following procedure. The first step consists in finding the centroid index of the cut or second layer cell from

which the interpolation will start: to do this, a point L on the segment connecting the cut cell volume centroid

to the considered face centroid is determined (1/10 of the segment lenght far from the volume centroid); then,

in a surrounding cloud of other cut or second layer (e.g., ρUz) cells, the centroid with minimum distance from

L is chosen. It is observed that, in the same example, the centroid fromwhich to start the interpolation of ρUz

to estimate the right state (i.e., from outide the ρ volume) on the face of the ρ cut cell control volume with

indices (i,j,k) and normal z+, is the same centroid used to start the ρUz interpolation required to estimate the

left state of the ρ cut cell volume with indices (i+1,j,k) and normal z−. Then, interpolation proceeds.

Figure 4.2 shows the neighbouring centroids (red bullets) of the ρUz interpolation function used to calculate

the left and right states on the positive (A,B centroids) and negative (B,C centroids) faces with normal versor

parallel to the z direction of a ρ cut cell (the centroid D, indicated with a blue open circle).

In order to couple the finite volume method of the Immersed Volume method and the finite difference

general code, the convective or diffusive term F in the transport equation for a second layer cell is calculated

as

Fi =
fIVM
i,p ci,p + fIVM

i,n ci,n + ffdi,p(1− ci,p) + ffdi,n(1− ci,n)

Vol2l
, (4.28)

where Vol2l is the volume of the second layer cell, fIVM
i,p is the flux, on the positive face p (n, stands for the

negative one) with normal i calculated by the finite volume solver of the IVM method, ffdi,p that calculated by

the general finite difference code, and the coefficient ci,p(n) is 1 if the positive (negative) face is in contact

with a cut cell, 0 otherwise.
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5 Check of the accuracy order

Since the proposed method should be capable of performing stable high Reynolds number LES of flows in

complex geometries, in this section we will focus on the study of the error of the Least-Squares method where

the interpolating function is approximated with a second order polynomial (all the nine derivative terms of

Eqn. 4.1 are retained). In fact in the case of high speed flows, if the interpolating function is approximated by

means of a first order polynomial (only the first three derivative terms of Eqn. 4.1 are retained), non-physical

pressure waves arise near the boundary surface, which lead to numerical instability.

In order to validate the proposed three-dimensional least-squares reconstruction method (Eqns. 4.12), the

interpolation of an arbitrary smooth function

φ(x, y, z) = e−10000(x2+y2+z2) (5.1)

is tested on a geometrically cubic domainΩ : [−1D, 1D]x[−1D, 1D]x[−1D, 1D], to confirm that both maxi-

mum error (L∞ norm) and average error (L1 and L2 norms) behave as expected.

A series of four uniform cartesian meshes was generated within the domain, ranging in size from 16 to 128

cells in each direction. A centered sphere with a diamterD = 0.01m is cut out of the domain to investigate the

order of discretizzation of the functionφ(x) and its gradient∇Œ(x) at complex boundaries. The test function

was averaged over the control volume using a fourth order accurate quadrature rule and the value stored in

the cut cell centroid. The errors are computed on the sphere surface S by

{
esφ = φ(xsc) − φInt(xsc)

es∇ = ∇φ(xsc) −∇φInt(xsc).
(5.2)

and the Ln norm of the errors is computed by

Ln(e) =

(∑
k∈S

As)−1
∑
k∈S

As|esφ(x
s
c)|

)1/n

, e ∈ esφ, e
s
∇. (5.3)

S being the set of the sphere boundary surfaces cutting the computational cells and xsc, the centroid of each

boundary surface for simplicity. The results obtained for different grid resolution are summarized in Tables

5.1-5.2 and plotted in Fig. 5.1a-b. The error of the interpolation function converges at third order in all norms,

while the gradient error shows almost second-order convergence in all norms.

Grid L1 error norm L2 error norm L∞ error norm

Error Order Error Order Error Order

163 5.97 x 10−4 - 6.41 x 10−4 - 1.01 x 10−3 -

323 7.27 x 10−5 3.03 7.94 x 10−5 3.01 1.45 x 10−4 2.80

643 8.45 x 10−6 3.03 9.32 x 10−6 3.08 2.09 x 10−5 2.79

1283 1.02 x 10−6 3.11 1.13 x 10−7 3.04 2.58 x 10−6 3.01

Tabella 5.1: Error eφ and error convergence in the Least-Squares interpolation method at the sphere's surface

points in different norms.
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Figura 5.1: Error convergence of the surface reconstruction and its gradient in the L1,L2 and L∞ norms: (a)

Scalar Least Squares reconstruction, (b) Least Squares Gradient reconstruction, (c) Moving Least

Squares Gradient reconstruction.

25



Accordo di PROGRAMMAMSE-ENEA

Grid L1 error norm L2 error norm L∞ error norm

Error Order Error Order Error Order

163 1.85 x 100 - 1.90 x 100 - 2.72 x 100 -

323 4.27 x 10−1 2.11 4.39 x 10−1 2.11 7.09 x 10−1 1.94

643 9.98 x 10−2 2.09 1.02 x 10−1 2.10 1.91 x 10−1 1.89

1283 2.37 x 10−2 2.07 2.44 x 10−2 2.06 5.01 x 10−2 1.93

Tabella 5.2: Error e∇ and error convergence in the Least-Squares interpolationmethod of the gradient (o(102))
at the sphere's surface points in different norms.

Grid L1 error norm L2 error norm L∞ error norm

Error Order Error Order Error Order

163 8.40 x 10−1 - 9.60 x 10−1 - 2.04 x 100 -

323 1.40 x 10−1 2.58 1.70 x 10−1 2.49 5.10 x 10−1 2.00

643 2.29 x 10−2 2.60 2.94 x 10−2 2.52 1.23 x 10−1 2.04

1283 3.84 x 10−3 2.57 5.43 x 10−3 2.43 3.01 x 10−2 2.03

Tabella 5.3: Error e∆ and error convergence in theMoving-Least-Squares interpolationmethod of the gradient

(o(102)) at the sphere's surface points in different norms.

In order to decrease the error in the calculation of the viscous stress at the solid boundary, a Moving-Least-

Squares method [[43]] is adopted for the calculation of the velocity gradients on the boundary surface. The

error e∇ and error convergence in reconstructing the gradient at boundary surface are shown in Table 5.3 and

plotted in Fig. 5.1c. The error gradient shows a convergence between second and third-order in L1 and L2,

and almost second-order in L∞.
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6 Numerical results and validation

The numerical technique developed and proposed in this article has been validated by simulating non-reacting

laminar (Reynolds 50, 200, 250) and turbulent (Reynolds 51500) flows past a sphere (without and with sting,

respectively). Its robustness and capability to correctly predict the flow behaviour around squared edges has

also been proved by simulating a reacting premixed flow past a cube at Reynolds 3200.

The solver has been fully parallelized using the Message Passing Interface (MPI) libraries such that parallel

computations on shared and distributed memory systems are possible. A genetic algorithm that takes into

account also the higher computational cost of cut-cells is used to select the best decomposition.

6.1 Non-reacting laminar flow past a sphere

The flowpast a sphere is an appropriate validation test case for Cartesian gridmethods because of the presence

of a large variety of cut cell volume shapes. The flow past a sphere exhibits different regimes in the laminar

range depending on the Reynolds number ReD = ρuL/µ∞, with D the diameter of the sphere. The flow is

steady and axisymmetric up to ReD = 210, whilst it is steady but non-axisymmetric in the range of ReD =
210− 270. Increasing the Reynolds number from 270 to 300, the flow becomes unsteady experiencing vortex

shedding.

For the present three-dimensional simulations of a uniform flow past a sphere, a computational domain

Ω: [-6D, 6D]x[-6D, 6D]x[-6D, 16D] is used, with the midpoint of the sphere located at the system origyn. The

cartesian domain contains approximately 2.5 million of cells. The grid is refined near the embedded sphere's

surface in all directions with a minimum mesh resolution ∆x ≈ 0.04D.

The flow was investigated at three different Reynolds numbers in the laminar steady regime, i.e., ReD =
50, 200, 250. Numerical results show the expected flow topology and agreement with experimental and nu-

merical data available in literature. In particular, results are quantified and compared in terms of the drag

coefficient Cd = Fz/(0.125ρ∞v2∞)πD2, the non-dimensional recirculation region lenght L/D, and, in the

non-axisymmetric cases, the lift (lateral force) coefficient Cl = Fx/(0.125ρ∞v2∞πD2), reported in Table 6.1.

The wall-shear stress were calculated using the Eqn. (4.27) with the velocity gradients given by Eqn. (4.16).

The steady and axisymmetric flow fields at ReD = 50 and ReD = 200 are reported in Figs. 6.1 and 6.2. The

axisymmetric recirculation zone, stably attached to the leeward side of the sphere, is clearly visible bymeans of

the streamlines. Comparing Figs. 6.1a and 6.2a it is observed the increase of its length with Reynolds number.

Contribution ReD = 50 ReD = 200 ReD = 250

Cd L/D Cd L/D Cd Cl

Hartmann et al. [[18]] 1.568 0.410 0.764 1.456 0.698 0.065

Johnson and Patel [[52]] 1.57 0.41 0.78 1.46 - 0.06

Marella et al. [[53]] 1.56 0.39 - - - -

Kim et al. [[54]] - - - - 0.701 0.059

Present 1.566 0.408 0.765 1.457 0.700 0.063

Tabella 6.1: Three dimensional simulation of steady flow past a sphere at Reynolds numbers ReD = 50 and

ReD = 200 and Ma∞ = 0.09: non dimensioanl recirculation region L/D and drag coefficient

Cd.
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Figura 6.1: Flow past a sphere, Re = 50: pressure, streamwise velocity and Mach number colour maps in a

middle plane x-z and y=0. Units are Pa and m/s.

Figura 6.2: Flow past a sphere, Re = 200: pressure, streamwise velocity and Mach number colour maps in a

middle plane x-z and y=0. Units are Pa and m/s.

Figura 6.3: Flow past a sphere, Re = 250: pressure colour maps and streamlines in two middle planes, (a) x-z

plane and (b) y-z plane. Units are Pa.
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Figures 6.1b-c and 6.2b-c show the streamwise velocity and the Mach number (with the grid adopted in the

simulation) of the flowfield at ReD = 50 and ReD = 200, respectively. Figure 6.3 shows the pressure contour

and streamlines of the flow past a sphere at Re = 250 (Ma∞ = 0.09) on two orthogonal middle planes, the

x-z (a) and y-z (b) planes, respectively. As shown by the streamlines, the axisymmetry of the flow is lost, while

still remains steady.

6.2 Non-reacting turbulent flow past a sphere

Several simulations of the flow past a sphere in the sub-critical regime have been carried out, contributing

to a better understanding of fluid and vortex-shedding dynamics. Tomboulides et al. [[48]] performed time-

accurate direct numerical simulation up to Re = 1000. Costantinescu et al. carried DES for studying the flow

behind a sphere for the sub-critical and supercritical regimes at Reynolds numbers in the range of 104 − 106

[[49]]. More recently Rodriguez et al. [[50]] performed DNS of the flow over a sphere in the subcritical regime

at Re = 3700, determining the separation point and vortex shedding characteristic frequencies.

In this section the Immersed Volume Method is validated against the Bakic experiment [[47]] of the con-

fined (in a squared duct) flow past a sphere with sting at Re = 51500. At this Reynolds number the flow is

turbulent, and in the present simulation this issue is accounted for by using a Large Eddy Simulation approach,

and in particular the Smagorinsky subgrid scale model with its constant dynamically calculated by means of

Germano's procedure.

The Reynolds number based on the freestream velocity is ReD = ρ∞u∞D/µ∞ = 51500, D being the

sphere diameter (0.0614m).

The cartesian computational domainΩ: [−1.D, 2.5D]x[−2.44D, 2.44D]x[−2.44D, 2.44D] is discretized by
means of [280]x[140]x[140] points in the z (streamwise), x and y directions, respectively. The midpoint of the

sphere is located at the system origyn. The non-uniform grid is locally refined near the surface of the sphere,

along the stick (that has a diamater d of 0.13D) and near the separation regions. The free stream air velocity

U∞ is 12.6m/s and the corresponding Mach numberMa∞ = U∞/c∞ = 0.037. The inlet turbulence level is

0.56% and these turbulent inflowboundary conditions are artificial prescribed bymeans of the Klein procedure

[[51]]. The time step due to the CFL condition was around 1.2e− 7s.

Instantaneous flowfields were sampled at 25000Hz, for a total duration of 0.07s. Averaged results show

that the laminar boundary layer separates at the angle of 84◦ from the stagnation point, very close to the

experimental 82◦ measure. Beyond the separation point the flow becomes turbulent and a recirculation zone

forms downstream of the sphere. The length of this wake is about L = 1.4D from the origin, in good agree-

ment with the experimetal L = 1.5Dmeasure. Figure 6.4 shows the instantaneous axial velocity distribution

on the plane x = 0 with the turbulent recirculation region clearly evidenced, and two pressure iso-surfaces

that indicate the stagnation region in front of the sphere (z = −0.0307m) and the annular expansion region

(z = 0m), and also identifies some turbulent structures in the wake. Apart from the agreement of predicted

separation point location and recirculation zone length with experimental measures, quantitative validation of

the Immersed Volume Method is also provided in Fig. 6.5. In this picture, mean axial velocityUz is compared

against experimetal data. The agreement is good as well as for theU2
zrms

/U2∞ Reynolds stresses shown in Fig.

6.6, even though the grid near the embedded sphere's surface has a minimum mesh space ∆ ≈ 0.015D.

6.3 Turbulent premixed flame past a cube

The simulation of a turbulent flow past a cube in a cross-squared duct with combustion is chosen as an appro-

priate test case to prove the robustness of the suggested IVM technique. In fact, this simulation is characterized

by the presence of sharp edge boundaries, cut cells with internal volume and faces' centroids and sharp density

and velocity gradients.

A stoichiometric mixture of CH4 and air at 650K flows through the duct inlet at 13m/s. The premixed

stoichiometric mixture was preheated up to 650K since with an inlet temperature of 300K the flame was

stretched up to blow out by high velocity gradients. The Reynolds number based on bulk quantities at the duct
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Figura 6.4: Instantaneous axial velocity (m/s) colour map of the flow past a sphere with sting; pressure iso-

surfaces at 101317 Pa and 101409 Pa are also shown. Details of the STL reconstruction of the solid

surface (white lines) and of the simulation grid (black lines) are zoomed in.

Figura 6.5: Comparison of axial velocity Uz/U∞ at different z/D positions: experiment (◦), LES (black line).
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Figura 6.6: Comparison of U2
zrms

/U2∞ at different z/D positions: experiment (◦), LES (black line).

section (assuming its half width as reference length) crossing the cube leading edge is ReLED = 3200 and the

maximumMach number is ∼ 0.05.
The computational domain isΩ:[−2L, 3.5L]x[−2L, 2L]x[−2L, 2L], L being the cube size. The cartesian non-

uniform domain has 120x80x80 grid points in the axial and spanwise directions. Turbulence closure is solved

within the LES framework by means of the Smagorinsky model with its constant calculated dynamically via

Germano's identity. Turbulent combustion is closed by means of the Fractal Model. Transport properties are

accurately estimated by means of kinetic theory and well known mixing laws. A reduced kinetic mechanisms

for the CH4 oxidation with 5 chemical reacting species and 3 reactions is adopted.

Looking at Fig. 6.7, it is clearly visible that a separation region occurs near the lower edge of the cube. This

causes the formation of a lateral first recirculation region on the side walls just after the separations. Then the

flow esperiences a second recirculation region that anchors the flame downstream of the cube. It is observed

that the first lateral vortex is able tomove upstream up to the leading edge of the cube, thus promotingmixing

of hot products and fresh mixture.

The effects of the two different viscous and pressure flux expressions, i.e., Eqns. (4.26) and (Eqn. 4.27), are

shown in Fig. 6.8 in terms of resulting temperature (a-b) and velocity fields (c-d), starting the simulation from

the same initial flowfield. Figures 6.8a,c evidence the effects of the classical scheme Eqn. (4.26) application,

where the cutting surface is approximated by a plane and four different surface centroids are identified for

the three velocities and scalar variables, while Figs. 6.8b,d show the results obtained adopting the new one

Eqn. (4.27). It is clearly evidenced that, the better evaluation of viscous stresses and pressure force near the

cube's edge is responsible for the better characterization of the recirculation region and consequently for the

attacchement of the flame.
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Figura 6.7: Turbulent premixed reacting flow past a cube: a) temperature iso-surface (1500K) coloured by axial

velocity Uz and temperature slice; b) x-z plane of instantaneousUz with streamlines.

Figura 6.8: Turbulent premixed flame past a cube: a-b) temperature snapshots and streamlines with the stress

tensor and pressure fluxes calculated respectively with Eqns. (4.26) and (4.27); c-d) axial velocity

snapshots with the stress tensor and pressure fluxes calculated respectively with Eqns. (4.26) and

(4.27).
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7 Conclusions

Results obtained by means of the classical Immersed Boundary method in finite difference low-Mach number

codes with staggered grid formulation are generally affected by unphysical spatial oscillations around body

surfaces when simulating reactive flows. Application of IB methods in finite difference compressible codes

with staggered grid formulation fails in simulating reactive flows due to divergence of calculation, or due to

the presence of unphysical pressure waves. This experience motivates present work.

A cut-cell based Cartesian grid method for three-dimensional compressible flows and non-uniform stagge-

red grid was presented. The small-cell problem inherent in Cartesian cut-cell methods was solved using a

cell-merging/cell-linking technique. The effective treatment of the small cells enabled the use of rather large

CFL numbers in simulations. The accuracy of the viscous fluxes is second order.

The suggested technique has been succesfully validated by simulating laminar and turbulent nonreactive

flows around a sphere at different Reynolds numbers and comparing numerical predictions with experimental

data. The robustness of the method was also proved by simulating a turbulent premixed flame anchored by

means of a cubic bluff-body: this test case is characterized by the presence of squared edges and strong density

gradients due to chemical reactions of a premixed CH4/air flame.

In the next future, the suggested technique will be extended to work with finite difference codes having

accuracy order higher than two (explicit or implicit compact scheme) and to calculate heat conduction inside

solid boundaries.
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