

Ricerca di Sistema elettrico

Analisi di anomalie e guasti che inficiano la sicurezza e l'operatività del sistema elettrico

G.Adinolfi, A. Buonanno, R. Ciavarella, A.Ricca, V. Sorrentino, M. Valenti

RdS_PTR 22-24_PR 2.3_LA1.1_063

ANALISI DI ANOMALIE E GUASTI CHE INFICIANO LA SICUREZZA E L'OPERATIVITÀ DEL SISTEMA ELETTRICO

G. Adinolfi, A. Buonanno, R. Ciavarella, A. Ricca, V. Sorrentino, M. Valenti (ENEA)

Giugno 2023

Report Ricerca di Sistema Elettrico

Accordo di Programma Ministero dell'Ambiente e della Sicurezza Energetica - ENEA Piano Triennale di Realizzazione 2022-2024

Obiettivo: Decarbonizzazione/Digitalizzazione ed evoluzione delle reti Progetto: Evoluzione, pianificazione, gestione ed esercizio delle reti elettriche Linea di attività: LA1.1 Responsabile del Progetto: Maria Valenti, ENEA Responsabile Linea di Attività: Giovanna Adinolfi, ENEA Mese inizio previsto: 1 Mese inizio effettivo: 1 Mese fine previsto: 18 Mese fine effettivo: 18

Indice

1	RISULTATI ATTESI	3
2	RISULTATI OTTENUTI	3
3	PRODOTTI ATTESI	4
4	PRODOTTI SVILUPPATI	5
5	ANALISI DEGLI SCOSTAMENTI SU ATTIVITÀ E RISULTATI	5
6	SINTESI DELLE ATTIVITÀ SVOLTE	5
7	DETTAGLIO DELLE ATTIVITÀ SVOLTE	5
8	CONTRIBUTO DELLE EVENTUALI CONSULENZE ALLE ATTIVITÀ SOPRA DESCRITTE	11
9	PUBBLICAZIONI SCIENTIFICHE	11
10	EVENTI DI DISSEMINAZIONE	11
APP	ENDICE 1	12
APP	ENDICE 2	25
APP	ENDICE 3	36

1 Risultati attesi

Lista dei risultati attesi come da capitolato vigente

Si riporta di seguito la lista dei risultati attesi come da capitolato vigente:

- Analisi di anomalie e guasti per generatori fotovoltaici
- Analisi di anomalie e guasti per generatori eolici
- Analisi di anomalie e guasti delle Fuel Cell
- Analisi di anomalie e guasti associati alle Batterie
- Analisi di anomalie e guasti associati ai sistemi di conversione DC/DC e DC/AC
- Analisi di anomalie e guasti di apparati di monitoraggio
- Analisi di anomalie e guasti di apparati di comunicazione
- Analisi di anomalie e guasti di apparati di controllo

2 Risultati ottenuti

Lista dei risultati ottenuti (Evidenziare in che misura il risultato è stato ottenuto ed il beneficio per il sistema elettrico nazionale e i suoi utenti. Aggiungere eventuali risultati ottenuti non previsti nel capitolato)

Le attività svolte nella presente LA hanno riguardato lo studio della letteratura di settore e della documentazione tecnica finalizzato all'acquisizione di dati utili all'analisi e alla caratterizzazione dei comportamenti anomali e dei guasti per diversi apparati di rete. Gli apparati analizzati sono stati identificati nella Tabella 4 del capitolato tecnico. Gli output dell'analisi condotta costituiranno un input sia per la LA1.3 che per la LA1.16. Il risultato atteso è stato pienamente raggiunto, ovvero la LA ha identificato, tra i componenti selezionati, quelli per i quali sono disponibili in letteratura i dati ricercati (sintetizzati nel presente documento) e quelli per i quali risulta necessaria la conduzione di test emulativo-sperimentali per la caratterizzazione delle anomalie nella LA1.16.

Per i componenti, per i quali sono stati reperiti dati sufficienti, si è provveduto ad analizzare, raggruppare e sintetizzare le informazioni in forma tabellare. Le tabelle prodotte riportano, per ciascun componente, le principali anomalie e guasti con indicazione dei relativi riferimenti bibliografici e i dataset (ove disponibili), reali o simulati/sintetici, da poter utilizzare per modellazioni matematiche e/o caratterizzazioni del componente con il relativo link per il download. Le tabelle prodotte in relazione all'analisi sulle anomalie e guasti sono riportate in Appendice 1 (tabelle 1-8), mentre le tabelle di dataset sono riportate in Appendice 2 (tabelle 9-14).

I dati così sistematizzati rappresentano un interessante base dati a beneficio dei diversi stakeholder della filiera energetica (es. aziende produttrici di tecnologie connesse al sistema elettrico, enti di ricerca, ecc.). I riferimenti alle tabelle per ciascun componente sono di seguito sintetizzati.

• Analisi di anomalie e guasti per generatori fotovoltaici

I risultati relativi ai generatori fotovoltaici sono sintetizzati in: Tabella 1 (classificazione anomalie e guasti) e Tabella 9 (dataset)

• Analisi di anomalie e guasti per generatori eolici

I risultati relativi ai generatori fotovoltaici sono sintetizzati in: Tabella 2 (classificazione anomalie e guasti) e Tabella 10 (dataset)

- Analisi di anomalie e guasti degli elettrolizzatori
- I risultati relativi ai generatori fotovoltaici sono sintetizzati in: Tabella 3 (classificazione anomalie e guasti) e Tabella 11 (dataset)
- Analisi di anomalie e guasti delle Fuel Cell
- I risultati relativi ai generatori fotovoltaici sono sintetizzati in: Tabella 4 (classificazione anomalie e guasti) e Tabella 12 (dataset)
- Analisi di anomalie e guasti associati alle Batterie

I risultati relativi alle batterie sono sintetizzati in: Tabella 5 (classificazione anomalie e guasti) e Tabella 13 (dataset)

• Analisi di anomalie e guasti associati ai sistemi di conversione DC/DC e DC/AC

I risultati relativi ai sistemi di conversione DC/DC e DC/AC sono sintetizzati in: Tabella 6 (classificazione anomalie e guasti) e Tabella 14 (dataset). Un approfondimento sui componenti di tali apparati che risentono maggiormente dei fattori di stress è riportato in Appendice 3.

• Analisi di anomalie e guasti di apparati di monitoraggio

I risultati relativi agli apparati di monitoraggio sono sintetizzati in: Tabella 7 (classificazione anomalie e guasti). Non sono stati trovati dataset pubblici relativi a questa tipologia di apparati, né modelli a partire dai quali costruire dataset sintetici.

• Analisi di anomalie e guasti di apparati di comunicazione

I risultati relativi agli apparati di comunicazione sono sintetizzati in: Tabella 8 (classificazione anomalie e guasti). Non sono stati trovati dataset pubblici relativi a questa tipologia di apparati, né modelli a partire da cui costruire dataset sintetici.

• Analisi di anomalie e guasti di apparati di controllo

L'analisi della letteratura tecnico-scientifica non rende disponibili dataset pubblici o articoli tecnici che riportano informazioni circa le anomalie e i guasti meccanici e/o elettrici agli apparati di controllo. Tale assenza di dati è presumibilmente riconducibile all'alta affidabilità dei componenti generalmente adoperati per la gestione dei sistemi elettrici, quali i sistemi SCADA. Le vulnerabilità, studiate per questo tipo di apparati, sono connesse alle problematiche di cybersicurezza più che alle problematiche di affidabilità del componente.

3 Prodotti attesi

Lista dei prodotti hardware/software eventualmente attesi per la LA

Per la presente LA non sono attesi prodotti hardware/software.

4 Prodotti sviluppati

Lista dei prodotti hardware/software eventualmente sviluppati nella LA, illustrando, per il software, le modalità di accesso per gli utenti (Aggiungere eventuali prodotti sviluppati non previsti nel capitolato)

La LA1.1 non prevede lo sviluppo di prodotti hardware/software.

5 Analisi degli scostamenti su attività e risultati

(8000 caratteri max)

Descrivere le motivazioni di eventuali scostamenti tecnici/economici rispetto al preventivo e criticità riscontrate (*Evidenziare il contenuto in riferimento al piano di rischi presentato*)

Non si sono registrati scostamenti tecnico e/o economici nell'ambito della LA1.1.

6 Sintesi delle attività svolte

(1000 caratteri max)

La LA1.1 si è posta l'obiettivo di identificare le principali cause di comportamenti anomali e guasti per specifici dispositivi di rete e la disponibilità di dati per la relativa caratterizzazione. A tale scopo, per ciascuno dei componenti selezionati, si è proceduto ad esaminare la letteratura tecnico-scientifica e la documentazione tecnica (es. datasheet forniti dai produttori) per individuare le tipologie di guasto più frequenti e la disponibilità di dati simulati e/o sperimentali per la relativa caratterizzazione. Laddove tali dati non sono stati reperiti, si è proceduto alla ricerca di modelli matematici e/o metodologie empiriche/simulative per la caratterizzazione dei guasti da poter utilizzare nelle successive attività del progetto. Al fine di rendere più fruibili i risultati ottenuti, essi sono stati organizzati in tabelle riportate nelle Appendici del presente documento. I risultati della linea saranno divulgati, nel II SAL, mediante pubblicazione scientifica.

7 Dettaglio delle attività svolte

(15000 caratteri max)

Descrivere in dettaglio le attività svolte nella LA (*Evidenziare come si sono ottenuti i risultati. Descrivere* brevemente anche le attività, per le quali si sono spese delle risorse, che tuttavia non hanno portato all'ottenimento dei risultati previsti al fine di permettere la corretta valutazione di congruità e pertinenza dei costi rendicontati.)

Le attività svolte nella presente LA sono state focalizzate sullo studio della letteratura e dei documenti tecnico-scientifici al fine di acquisire dati utili all'analisi e alla caratterizzazione di anomalie e guasti di diversi apparati di rete. Gli apparati analizzati sono stati identificati nella Tabella 4 del capitolato tecnico. Le attività svolte per ciascun componente sono di seguito sintetizzate.

• Analisi di anomalie e guasti per generatori fotovoltaici

L'attività è stata condotta attraverso tre fasi principali. Nella prima, si è proceduto a identificare le principali anomalie e guasti dei generatori fotovoltaici; successivamente, a individuare i parametri

per caratterizzare i guasti e, infine, a reperire dataset relativi ad anomalie e guasti dei sistemi fotovoltaici. Con riferimento al primo punto, le anomalie e i guasti più frequenti sono riconducibili ai seguenti fenomeni per ciascuno dei quali sono riportati i riferimenti risultanti dall'analisi condotta in Tabella 1:

- mismatching: effetto che si registra quando i moduli fotovoltaici, collegati in serie, non presentano i medesimi parametri elettrici di funzionamento tra loro con conseguente riduzione della producibilità dell'impianto. Il mismatching può essere temporaneo (es. ombreggiamenti) o permanente (es. degradazione, moduli difettosi, ecc.) e si rileva quando i moduli sono esposti a diverse condizioni ambientali, intervengono fattori di deterioramento o presentano difetti costruttivi.
- **corto circuito**: guasto più comune nei moduli fotovoltaici, provoca riduzione o interruzione della produzione di energia elettrica.
- guasti al sistema PV includono: guasto da circuito aperto senza/con diodo di bypass, guasto al diodo di bypass, guasto agli array PV, guasto a terra, guasto "Line-to-line", guasto alla "Box di giunzione", guasti da arco elettrico, guasti al sistema di controllo MPPT, guasto all'inverter, guasto "Bridging".

Nella seconda fase, si è proceduto a individuare i parametri necessari alla caratterizzazione dei guasti. In tal senso, l'articolo Kim et al.¹ fornisce gli effetti sulla curva I-V di alcuni guasti; tale curva potrà essere adoperata nella LA1.16 per analizzare/simulare gli impatti dei guasti sulla curva di funzionamento del sistema e/o individuare il tipo di guasto osservando la curva I-V in uscita dal generatore. Infine, con riferimento all'ultima fase di lavoro, in Tabella 9 sono riportati i dataset contenenti anomalie e guasti associati ai sistemi fotovoltaici.

• Analisi di anomalie e guasti per generatori eolici

L'attività è stata condotta attraverso due fasi principali. Innanzitutto, si è proceduto a identificare le principali anomalie e guasti associati ai generatori eolici; successivamente a reperire i relativi dataset. In sintesi, l'analisi condotta ha evidenziato che diversi componenti, con probabilità diverse, potrebbero portare ad un funzionamento anomalo o errato del generatore eolico: componenti elettrici, sistema di controllo, pitch system, pale, alberi, cuscinetti, navicella, trasmissione, ecc. Alcuni di questi componenti hanno un *tasso di guasto* mediano più alto (componenti elettrici, sistema di controllo, pitch system, pale, alberi, struttura). I tassi di guasto delle installazioni offshore risultano generalmente più alti di quelli onshore, anche per le condizioni operative più critiche nel caso offshore (es. velocità del vento più elevata, azione corrosiva del sale marino, ecc.). Il downtime in installazioni offshore, date le difficoltà logistiche, è mediamente più elevato di quello delle installazioni onshore.

In generale, la letteratura tecnico-scientifica rende disponibili numerosi lavori sui sistemi di diagnostica dei generatori eolici ma fornisce pochi dati su tassi di guasto e anomalie nei diversi componenti. I dati reperiti sono sintetizzati nelle Tabelle 2 e 10.

• Analisi di anomalie e guasti degli elettrolizzatori

L'attività è stata condotta in due fasi. In primis, si è proceduto a identificare le principali anomalie e guasti associati agli elettrolizzatori (Tabella 3) e, successivamente, i relativi dataset (Tabella11). Con riferimento al primo punto, le anomalie e i guasti per ciascun componente dell'elettrolizzatore sono:

• Membrana

¹ "G. G. Kim, W. Lee, B. G. Bhang, J. H. Choi and H. -K. Ahn, "Fault Detection for Photovoltaic Systems Using Multivariate Analysis With Electrical and Environmental Variables," in IEEE Journal of Photovoltaics, vol. 11, no. 1, pp. 202-212, Jan. 2021, doi: 10.1109/JPHOTOV.2020.3032974"

Deterioramento meccanico	 Perforazione del collettore di corrente Micro-perforazioni causati da imperfezione in fase di produzione della MEA Allargamento o restringimento Idratazione non uniforme Mancanza di acqua
Deterioramento termico	Stress termiciCicli termici
Deterioramento chimico / elettrochimico	ContaminazioneAttacchi radicalici

Catalizzatore

Dissoluzione	 Potenziale operativo troppo elevato Formazione di complessi di iridio (III) solubile durante la reazione di evoluzione dell'ossigeno Inversione di corrente nelle procedure di spegnimento
Passivazione del supporto	Potenziale operativo troppo elevatoAmbiente altamente ossidante
Agglomerazione	 Sintering ed incremento delle dimensioni dei siti attivi Cicli di carico e avvio/spegnimento
Dissoluzione dello ionomero	 Alta densità di corrente Attacco chimico dei radicali
Contaminazione da cationi	 Bloccaggio dei siti attivi da potenziale deposizione Sostituzione dei protoni dello ionomero da parte dei cationi
Danni meccanici	 Pressione di serraggio non uniforme Dilatazione irregolare della membrana

• Piastra bipolare

Infragilimento da idrogeno	 Assorbimento dell'idrogeno da parte delle piast metalliche catodiche 	
Passivazione	Formazione di uno strato di ossido	
Corrosione	Ossidazione del titanio	
	 Corrosione da acidi dell'acciaio 	

• Collettori di corrente

Deterioramento chimico	Passivazione e corrosione della piastra metallica
Deterioramento meccanico	Compressione anomalaInfragilimento da idrogeno

Le principali cause di guasto sono legate alla membrana e al catalizzatore²; più rari sono i guasti di piastre bipolari e collettori di corrente. Diversi sono i metodi di diagnostica. I più innovativi³, i metodi statistici basati su reti neurali, necessitano di dati storici o sintetici del dispositivo⁴ e, quindi, di tempi

² M. Kheirrouz, F. Melino, and M. A. Ancona, "Fault detection and diagnosis methods for green hydrogen production: A review," Int J Hydrogen Energy, vol. 47, no. 65, pp. 27747–27774, 2022, doi: 10.1016/j.ijhydene.2022.06.115.

³ S. Tao, Y. Si-jia, C. Guang-yi, and Z. Xin-jian, "Modelling and control PEMFC using fuzzy neural networks," Journal of Zhejiang University-SCIENCE A, vol. 6, no. 10, pp. 1084–1089, 2005, doi: 10.1631/jzus.2005.A1084

⁴ M. Dhimish and X. Zhao, "Enhancing reliability and lifespan of PEM fuel cells through neural network-based fault detection and classification," Int J Hydrogen Energy, vol. 48, no. 41, pp. 15612–15625, 2023, doi: 10.1016/j.ijhydene.2023.01.064.

maggiori di caratterizzazione. I metodi tradizionali basati su misurazioni elettriche ed elettrochimiche sono più percorribili ma con una più limitata capacità di identificazione del guasto⁵.

In generale, lo studio condotto ha evidenziato la difficoltà di reperire dati empirici sui guasti degli elettrolizzatori. Per ovviare a tale difficoltà, a valle della ricognizione propedeutica alla classificazione di anomalie e guasti (Tabella 3), è stata condotta una ulteriore ricognizione finalizzata alla ricerca di modelli matematici per la costruzione di dataset sintetici (Tabella 11).

Si precisa, infine, che l'analisi dei guasti negli elettrolizzatori non era stata prevista da capitolato. Essa è stata condotta perché, in corso di svolgimento della LA1.14, si è palesata la necessità di acquisire dati per la caratterizzazione di questo tipo di apparati da utilizzare nell'ambito della LA1.16, per un'eventuale modellazione dei sistemi di accumulo ad idrogeno da abbinare alle Fuel Cell (FC).

Analisi di anomalie e guasti delle Fuel Cell

L'attività è stata condotta attraverso due fasi principali. In primis, si è proceduto a identificare le principali anomalie e guasti associati alle FC (Tabella 4); successivamente a reperire i relativi dataset.

Dall'analisi è emerso che i componenti più fragili sono la membrana e il catalizzatore⁶, che rappresentano il 95% dei malfunzionamenti. Non è stato, però, possibile reperire dati sperimentali sui guasti associati alle FC. Nella tabella dataset (Tabella 12) sono stati, quindi, riportati i diversi metodi diagnostici, sia di tipo stocastico⁷ e basati sulle reti neurali⁸ sia di tipo analitico, che diverse tecniche per l'analisi e la caratterizzazione on-line delle anomalie (Electrochemical Impedance Spectroscopy⁹, analisi della curva caratteristica V/P¹⁰, curva di polarizzazione¹¹, misurazione della tensione di cella¹²).

Analisi di anomalie e guasti associati alle Batterie

L'attività è stata condotta attraverso due fasi principali. In prima battuta si è proceduto a identificare le principali anomalie e guasti associati alle batterie con i riferimenti bibliografici (Tabella 5) e, successivamente, i relativi dataset (Tabella13). Con riferimento al primo punto, le principali anomalie e guasti nelle batterie sono di seguito richiamati, con l'indicazione delle possibili conseguenze¹³:

- Corto circuito esterno: può causare surriscaldamento e innalzamento della pressione.
- Corto circuito interno: può causare esplosione ed è principalmente causata dal sovraccarico.
- **Sovra-carica**: può provocare la reazione dell'elettrodo positivo con l'elettrolita, con conseguente generazione di calore, innalzamento della pressione e conseguente incendio.

⁵ R. Isermann, "Model-based fault-detection and diagnosis – status and applications," Annu Rev Control, vol. 29, no. 1, pp. 71–85, 2005, doi: https://doi.org/10.1016/j.arcontrol.2004.12.002.

⁶ K. Brik, F. Ben Ammar, A. Djerdir, and A. Miraoui, "Causal and Fault Trees Analysis of Proton Exchange Membrane Fuel Cell Degradation," J Fuel Cell Sci Technol, vol. 12, no. 5, Oct. 2015, doi: 10.1115/1.4031584.

M. Yue, S. Jemei, R. Gouriveau, and N. Zerhouni, "Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies," Int J Hydrogen Energy, vol. 44, no. 13, pp. 6844–6861, Mar. 2019, doi: 10.1016/j.ijhydene.2019.01.190.

 ⁷ H. Wang, H. Li, and X.-Z. Yuan, PEM fuel cell failure mode analysis, vol. 1. CRC Press, 2011.
 P. Rama, R. Chen, and J. Andrews, "Failure analysis of polymer electrolyte fuel cells," SAE Technical Papers, vol. 2008, no. 724, pp. 776–790, 2008, doi: 10.4271/2008-01-0634.

⁸ - M. Dhimish and X. Zhao, "Enhancing reliability and lifespan of PEM fuel cells through neural network-based fault detection and classification," Int J Hydrogen Energy, vol. 48, no. 41, pp. 15612–15625, 2023, doi: 10.1016/j.ijhydene.2023.01.064.

L. Mao and L. Jackson, "Comparative study on prediction of fuel cell performance using machine learning approaches," Lecture Notes in Engineering and Computer Science, vol. 1, pp. 52–57, 2016.

⁹ S. S. Araya, F. Zhou, S. L. Sahlin, S. Thomas, C. Jeppesen, and S. K. Kær, "Fault characterization of a proton exchange membrane fuel cell stack," Energies (Basel), vol. 12, no. 1, 2019, doi: 10.3390/en12010152.

¹⁰ Z. Lin, C. H. Wang, and Y. Liu, "The Fault Analysis and Diagnosis of Proton Exchange Membrane Fuel Cell Stack," Adv Mat Res, vol. 197–198, pp. 705– 710, 2011, doi: 10.4028/www.scientific.net/AMR.197-198.705.

¹¹ L. Shi, B. P. Setzler, and Y. Yan, "Understanding the Ebalance for water management in hydroxide exchange membrane fuel cells," J Power Sources, vol. 536, no. April, p. 231514, 2022, doi: 10.1016/j.jpowsour.2022.231514.

¹² Z. Li, R. Outbib, S. Giurgea, D. Hissel, A. Giraud, and P. Couderc, "Fault diagnosis for fuel cell systems: A data-driven approach using high-precise voltage sensors," Renew Energy, pp. 1435–1444, 2019, doi: 10.1016/j.renene.2018.09.077.

¹³ Report di Ricerca di Sistema (affidatario ENEA): C. Di Bari, E. Rossi, S. Constà, F.Sacco "Definizione di procedure di prova di overvoltage e cortocircuito su sistemi di accumulo litio-ione" RdS_PAR2016_170

- **Sotto-scarica**: può provocare danni al catodo della cella elettrolitica, formazione di placche e dendriti e conseguente cortocircuito interno per perforazione del diaframma.
- Esposizione a calore esterno.
- Auto-riscaldamento.

Si precisa, infine, che l'analisi condotta ha evidenziato la disponibilità di dati per le sole batterie al litio, tecnologia attualmente più diffusa. Pertanto, i dati riportati nelle tabelle 5 e 13 sono riferiti a questo tipo di tecnologia e a essa si farà riferimento anche nelle successive fasi di progetto.

• Analisi di anomalie e guasti associati ai sistemi di conversione DC/DC e DC/AC

L'attività è stata condotta attraverso tre fasi principali. In prima battuta si è proceduto a identificare le principali anomalie e guasti associati ai sistemi di conversione DC/DC e DC/AC (Tabella 6); successivamente, all'identificazione dei metodi per la caratterizzazione dei guasti dei convertitori di interfaccia e, infine, alla ricerca di possibili dataset. Maggiori dettagli relativi ai risultati delle analisi condotte sono riportati in Allegato 2. È opportuno, in ogni caso, evidenziare che non è stato possibile reperire dataset relativi alle anomalie e ai guasti né dei convertitori di interfaccia né dei dispositivi a commutazione, capacitivi ed induttivi dello stadio di potenza, né dei componenti dello stadio di controllo. Pertanto, nella Tabella 14 non sono riportati dataset di dati sperimentali e/o simulati ma i metodi identificati nella seconda fase di lavoro per la caratterizzazione delle anomalie di funzionamento. Nel prosieguo del progetto si dovrà, quindi, valutare l'opportunità/possibilità di procedere a caratterizzazione dei componenti per la costruzione di dataset sperimentali.

• Analisi di anomalie e guasti di apparati di monitoraggio

L'attività è stata condotta attraverso due fasi principali. In prima battuta si è proceduto a identificare le principali anomalie e guasti associati agli apparati di monitoraggio (Tabella 7); successivamente, si è proceduto alla ricerca di possibili dataset. Con riferimento al primo punto, le principali anomalie e guasti associati agli apparati di comunicazione sono di seguito richiamati¹⁴:

- **Guasti meccanici**: guasti imputabili al cedimento della struttura meccanica dell'apparato (es. degrado dei materiali¹⁵, vibrazioni, shock esterni¹⁶).
- **Guasti Elettrici**: guasti che inficiano le proprietà elettriche dell'apparato (es. perdita di isolamento¹⁷, residuo anomalo di misurazione¹⁸ per blackout o sovraccarico dell'apparato).

¹⁴ Jyrki Kullaa, "Detection, identification, and quantification of sensor fault in a sensor network, Mechanical Systems and Signal Processing", Volume 40, Issue 1, 2013, Pages 208-221, ISSN 0888-3270, https://doi.org/10.1016/j.ymssp.2013.05.007.

¹⁵ Jiang, L., Djurdjanovic, D., Ni, J., Lee, J. (2006). Sensor Degradation Detection in Linear Systems. In: Mathew, J., Kennedy, J., Ma, L., Tan, A., Anderson, D. (eds) Engineering Asset Management. Springer, London. https://doi.org/10.1007/978-1-84628-814-2_138

¹⁶ F. Hau, F. Baumgärtner and M. Vossiek, "Influence of vibrations on the signals of automotive integrated radar sensors," 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 2017, pp. 159-162, doi: 10.1109/ICMIM.2017.7918881.

 ¹⁷ Yunbing Huang, Janos Gertler, Thomas J. McAvoy, "Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions", Journal of Process Control, Volume 10, Issue 5, 2000, Pages 459-469, ISSN 0959-1524, https://doi.org/10.1016/S0959-1524(00)00021-4.
 Xiaodong Zhang, T. Parisini and M. M. Polycarpou, "Sensor bias fault isolation in a class of nonlinear systems," in IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 370-376, March 2005, doi: 10.1109/TAC.2005.843875.

 ¹⁸ Liu et al., "Fault Test Analysis of Abnormal Remaining Amount of Smart Meter," 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 2023, pp. 1366-1370, doi: 10.1109/PandaFPE57779.2023.10140559

• Altri guasti: guasti che possono inficiare la misurazione dovuti ad esempio al rumore¹⁹, a errori di lettura (valore letto dall'apparato diverso da quello effettivo per una variazione del guadagno)²⁰, a perdite di calibrazione o degrado delle prestazioni²¹.

Lo studio ha evidenziato che i guasti degli apparati di monitoraggio dipendono fortemente dalle condizioni operative dell'ambiente in cui sono inseriti. I più comuni sono gli errori di lettura dovuti ad una errata calibrazione del sensore, a un degrado delle prestazioni, o a guasti di natura elettrica; meno frequenti sono i guasti di natura meccanica.

Per nessuna tipologia di guasto è stato possibile reperire dati simulati e/o sperimentali né informazioni riguardanti guasti e anomalie relative ai sistemi di misura per il settore specifico delle reti elettriche (smart meter). Pertanto, i risultati forniti fanno riferimento ad altri settori applicativi. Nel prosieguo del progetto si dovrà, pertanto, valutare l'opportunità/possibilità di procedere a caratterizzazione dei componenti per la costruzione di dataset sperimentali.

• Analisi di anomalie e guasti di apparati di comunicazione

L'attività è stata condotta attraverso due fasi principali. In prima battuta si è proceduto a identificare le principali anomalie e guasti associati agli apparati di comunicazione (Tabella 8); successivamente, si è proceduto alla ricerca di possibili dataset. Con riferimento al primo punto, le principali anomalie e guasti associati agli apparati di comunicazione sono di seguito richiamati²²:

- **Guasti del supporto di comunicazione**: guasti imputabili al mezzo di supporto e trasmissione (es. rottura fibra, eccessiva curvatura, connettori o rottura delle giunzioni²³).
- **Guasto al ricevitore**: guasti che riguardano un malfunzionamento del ricevitore, come un elevato tempo di ricezione del pacchetto dati²⁴.
- Integrità dei dati: guasti che inficiano l'integrità dei dati trasferiti, degradando l'accuratezza e l'affidabilità della trasmissione, e causati da alterazione o perdita di parte del pacchetto di dati trasmesso²⁵. Sono, generalmente, riconosciuti dal ricevitore mediante checksum²⁶.

L'analisi ha evidenziato che i guasti dovuti al mezzo di supporto sono più frequenti delle altre due tipologie. Per nessuna tipologia è stato possibile reperire dataset simulati/sperimentali ma solo metodi per la diagnostica dei guasti (Tabella 8).

¹⁹ Z. Q. Lei, G. J. Li, W. F. Egelhoff, P. T. Lai and P. W. T. Pong, "Review of Noise Sources in Magnetic Tunnel Junction Sensors," in IEEE Transactions on Magnetics, vol. 47, no. 3, pp. 602-612, March 2011, doi: 10.1109/TMAG.2010.2100814.

Reza Sharifi, Reza Langari, "Isolability of faults in sensor fault diagnosis, Mechanical Systems and Signal Processing", Volume 25, Issue 7, 2011, Pages 2733-2744, ISSN 0888-3270, https://doi.org/10.1016/j.ymssp.2011.02.015.

²⁰ F. Grouz, L. Sbita and M. Boussak, "Current sensors gain faults detection and isolation based on an adaptive observer for PMSM drives," 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), Hammamet, Tunisia, 2013, pp. 1-6, doi: 10.1109/SSD.2013.6564061. Youqing Wang, Donghua H. Zhou, "Sensor Gain Fault Diagnosis for a Class of Nonlinear Systems", European Journal of Control, Volume 12, Issue 5, 2006, Pages 523-535, ISSN 0947-3580, https://doi.org/10.3166/ejc.12.523-535.

²¹ Q. Yang and J. Wang, "Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location," Entropy, vol. 17, no. 12, pp. 7101– 7117, Oct. 2015, doi: 10.3390/e17107101.

²² F. E. Abrahamsen, Y. Ai, and M. Cheffena, "Communication Technologies for Smart Grid: A Comprehensive Survey," Sensors, vol. 21, no. 23, p. 8087, Dec. 2021, doi: 10.3390/s21238087

²³ Xinyu Dou et al., "Demonstration of chaotic-laser based WDM-PON secure optical communication and real-time online fiber-fault detection and location," 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, 2015, pp. 1-3, doi: 10.1109/OECC.2015.7340182. Chun-Kit Chan, F. Tong, Lian-Kuan Chen, Keang-Po Ho and D. Lam, "Fiber-fault identification for branched access networks using a wavelength-

sweeping monitoring source," in IEEE Photonics Technology Letters, vol. 11, no. 5, pp. 614-616, May 1999, doi: 10.1109/68.759416.

²⁴ F. Gardner, "A BPSK/QPSK Timing-Error Detector for Sampled Receivers," in IEEE Transactions on Communications, vol. 34, no. 5, pp. 423-429, May 1986, doi: 10.1109/TCOM.1986.1096561.

W. Yuan, Q. Shi, N. Wu, Q. Guo and X. Huang, "Gaussian Message Passing Based Passive Localization in the Presence of Receiver Detection Failures," 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 2018, pp. 1-5, doi: 10.1109/VTCSpring.2018.8417730.

²⁵ F. Li and B. Luo, "Preserving data integrity for smart grid data aggregation," 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 2012, pp. 366-371, doi: 10.1109/SmartGridComm.2012.6486011.

²⁶ H. Kim, I. Hwang, J. Lee, H. Y. Yeom and H. Sung, "Concurrent and Robust End-to-End Data Integrity Verification Scheme for Flash-Based Storage Devices," in IEEE Access, vol. 10, pp. 36350-36361, 2022, doi: 10.1109/ACCESS.2022.3163729

Si fa presente, infine, che non essendo l'analisi dell'integrità dei dati oggetto del presente progetto, nella LA1.16 si farà riferimento solo ai guasti al supporto e al ricevitore, per i quali si dovrà valutare l'opportunità/possibilità di procedere a caratterizzazione per la costruzione di dataset sperimentali.

• Analisi di anomalie e guasti di apparati di controllo

L'analisi della letteratura tecnico-scientifica condotta ha evidenziato che non sono disponibili dataset pubblici o articoli tecnici che riportano informazioni circa le anomalie e i guasti meccanici e/o elettrici agli apparati di controllo. Tale tema, in particolare, come emerso dall'analisi condotta, non viene trattato poiché i componenti generalmente adoperati per la gestione dei sistemi elettrici, quali i sistemi SCADA, presentano elevata affidabilità di tipo meccanico ed elettrico. Le vulnerabilità di questo tipo di apparati, infatti, sono generalmente riconducibili a problematiche di cybersicurezza e/o software²⁷. Non ricadendo queste ultime tra gli obiettivi del progetto ed essendo ininfluenti le prime ai fini della valutazione dell'affidabilità, si ritiene non necessario caratterizzate anomalie e guasti di tali apparati nelle successive LA.

8 Contributo delle eventuali consulenze alle attività sopra descritte

L'attività non ha previsto il ricorso a consulenze.

9 Pubblicazioni scientifiche

Elenco delle pubblicazioni scientifiche eventualmente risultanti dall'attività svolta

L'attività svolta non è stata oggetto di pubblicazioni scientifiche nel SAL.

10 Eventi di disseminazione

Lista degli eventi di disseminazione eventualmente scaturiti dall'attività svolta

L'attività svolta non è stata oggetto di eventi di disseminazione nel SAL.

²⁷ AEMO 2021 | Preliminary Report – Total loss of SCADA systems on 24 January 2021. Available at: https://www.aemo.com.au//media/files/electricity/nem/market_notices_and_events/power_system_incident_reports/2021/preliminary-report-total-loss-of-nem-scada-data.pdf?la=en

APPENDICE 1

Tabelle analisi anomalie e guasti per componente/sistema

Di seguito si riportano le tabelle riassuntive dei risultati ottenuti in seguito all'analisi della letteratura di settore per acquisire dati utili alla caratterizzazione dei comportamenti anomali dei diversi apparati di rete così come previsto da capitolato.

Tabella 1: Analisi dei principali guasti associati ai sistemi di generazione fotovoltaica			
Tipologia di anomalia o guasto	Dati e informazioni forniti dalla fonte	Fonti	
Ombreggiamento parziale Causato dal passaggio di nuvole, dalla presenza di alberi, o altre strutture che bloccano l'irradianza solare provocando un possibile effetto di mismatching Accumulo di polvere	DATI SIMULATIVI E SPERIMENTALI Risultati sperimentali ottenuti da test specifici METODOLOGIA / DATI Descrizione del fault e	Nguyen, X.H. "Matlab/Simulink Based Modeling to Study Effect of Partial Shadow on Solar Photovoltaic Array", Environ Syst Res 4, 20 (2015). https://doi.org/10.1186/s40068-015-0042-1 Y. Hu, W. Cao, J. Ma, S. J. Finney and D. Li, "Identifying PV Module Mismatch Faults by a Thermography-Based Temperature Distribution Analysis," in IEEE Transactions on Device and Materials Reliability, vol. 14, no. 4, pp. 951-960, Dec. 2014, doi: 10.1109/TDMR.2014.2348195. Li, Xiaoxia & Yang, Qiang & Lou, Zhuo & Yan, Weniun, (2018), Deep Learning Based Module	
Accumulo di polvere dovuto all'ambiente circostante che può provocare un possibile effetto di mismatching.	implementazione di un metodo per identificarlo. In [Mustafa et al, 2020] è descritto anche l'impatto sulle prestazioni	Defect Analysis for Large-Scale Photovoltaic Farms. IEEE Transactions on Energy Conversion. PP. 1-1. DOI: 10.1109/TEC.2018.2873358. Mustafa, Ramadan J., Mohamed R. Gomaa, Mujahed Al-Dhaifallah, and Hegazy Rezk. 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems" Sustainability 12, no. 2: 608. https://doi.org/10.3390/su12020608	
Caduta di foglie, deiezioni di uccelli Possibile effetto di mismatching	INFORMAZIONI GENERALI Impatto sulle prestazioni del sistema PV per ciascuna tipologia di evento)	Mustafa, Ramadan J., Mohamed R. Gomaa, Mujahed Al-Dhaifallah, and Hegazy Rezk. 2020. "Environmental Impacts on the Performance of Solar Photovoltaic Systems" Sustainability 12, no. 2: 608. https://doi.org/10.3390/su12020608	
Hot spot Degradazione delle proprietà meccaniche e ottiche dei materiali di incapsulamento che possono provocare un possibile effetto di mismatching.	METODOLOGIA Descrizione del fault e implementazione di un metodo per identificarlo	Mingyao Ma, Heng Liu, Zhixiang Zhang, Ping Yun, Fang Liu, Rapid diagnosis of hot spot failure of crystalline silicon PV module based on I-V curve, Microelectronics Reliability, 2019 - https://doi.org/10.1016/j.microrel.2019.113402.	
Degradazione dei moduli Declino costante della potenza prodotta dai moduli anche con possibile effetto di mismatching.	INFORMAZIONI GENERALI Tipi di degrado a cui sono soggetti i moduli fotovoltaici Tipi di stress accelerato utilizzati per valutarne l'affidabilità e la durabilità	Kim, J., Rabelo, M., Padi, S.P., Yousuf, H., Cho, E C., Yi, J., 2021. A review of the degradation of photovoltaic modules for life expectancy. Energies 14 (14), 4278.	

	prima del loro impiego in contesti reali	
Rottura del vetro	INFORMAZIONI GENERALI	Köntges M., Kurtz S., Packard C., Jahn U., Berger K.
Principalmente si ha durante l'installazione, dovuta ad una geometria non adatta dei morsetti (spigoli vivi), lunghezza o posizione dei morsetti. Può provocare un possibile effetto di mismatching	Descrizione del fault e delle sue cause	A., Kato K., Friesen T., Liu H., Van Iseghem M., et al., Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01:2014, 2014 <u>https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/</u>
Problemi connessi alla saldatura	INFORMAZIONI GENERALI	Itoh, U., Yoshida, M., Tokuhisa, H., Takeuchi, K.,
Causato dalla lisciviazione dell'argento o del rame, o dall'affaticamento del giunto di saldatura anche per imperfezioni durante il processo di saldatura. Problemi di saldatura possono provocare un possibile effetto di mismatching	Descrizione del fault e delle sue cause	Takemura, Y., 2014b. Solder joint failure modes in the conventional crystalline si module. Energy Procedia 55, 464–468
Rotture delle busbar di	DATI SPERIMENTALI	Colvin, D.J., Schneller, E.J., Davis, K.O., 2021.
Superficie della sezione trasversale ridotta attraverso la quale può passare corrente nel modulo. Causato da un errato processo di imballaggio, installazione, grandine e/o lancio di pietre. Può provocare un possibile effetto di mismatching	Risultati sperimentali ottenuti inducendo una rottura delle interconnessioni	module performance. Prog. Photovolt., Res. Appl. 29 (5), 524–532.
Decolorazione	DATI SPERIMENTALI	Bouaichi, A., Merrouni, A.A., El Hassani, A., Naimi,
Tipo di degradamento che porta alla modifica del colore dell'etilene vinil acetato (EVA) tra il vetro e le celle di solito verso il giallo o il marrone. Ha un impatto sulla potenza generata all'interno delle celle interessate dovute alla ridotta penetrazione della luce. Può provocare un possibile effetto di mismatching	Impatto sulle performance della decolorazione a spot osservata su moduli PV esposti ad un clima semi- arido per circa due anni.	Z., Ikken, B., Ghennioui, A., Benazzouz, A., El Amrani, A., Messaoudi, C., 2017. Experimental evaluation of the discoloration effect on PV- modules performance drop. Energy Procedia 119, 818–827.
Delaminazione	INFORMAZIONI GENERALI	Hasan, A.A., Ahmed Alkahtani, A., Shahahmadi,
Fenomeno causato dalla perdita dell'interfaccia vetro-EVA, cella- EVA, EVA-cella ed EVA-backsheet del modulo che porta alla formazione di gap. Esso può provocare un possibile effetto di mismatching	Descrizione del fault e delle sue cause	S.A., Nur E. Alam, M., Islam, M.A., Amin, N., 2021. Delamination-and electromigration-related failures in solar panels—A review. Sustainability 13 (12), 6882.
Problemi al telaio (rottura,	INFORMAZIONI GENERALI	Köntges M., Kurtz S., Packard C., Jahn U., Berger K.
piegamento, disallineamento, graffiatura)	Descrizione del fault e delle sue cause	A., Kato K., Friesen T., Liu H., Van Iseghem M., et al., Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01:2014, 2014

Problemi causati dal peso eccessivo della neve sul pannello. Essi possono provocare un possibile effetto di mismatching		https://iea-pvps.org/key-topics/review-of- failures-of-photovoltaic-modules-final/
Microfrattura dei moduli Microfratture dovute a diverse	INFORMAZIONI GENERALI Descrizione del fault e delle	Bdour, M., Dalala, Z., Al-Addous, M., Radaideh, A., Al-Sadi, A., 2020. A comprehensive evaluation on
cause, quali trasporto, installazione non corretta, vibrazioni, carichi eccessivi, stress ambientale, pulizia impropria, ecc. Esse possono provocare un possibile effetto di mismatching	sue cause	power degradation in photovoltaic solar panels. Sustainability 12 (16), 6416.
Rottura della cella	INFORMAZIONI GENERALI	Köntges M., Kurtz S., Packard C., Jahn U., Berger K.
Rotture della cella possono essere causate da diversi fenomeni o problemi che si manifestano in fase preinstallazione (produzione- trasporto-installazione) o nel periodo post-installazione (es. vibrazioni nell'ambiente di installazione, stress ambientali, pulizia e manutenzione non appropriate, ecc.). Rotture parziali delle celle possono provocare un	Descrizione del fault e delle sue cause [Köntges et al. (2014)] Studio del comportamento alla frattura dei wafer di silicio multicristallino [Popovich, (2011)]	 A., Kato K., Friesen T., Liu H., Van Iseghem M., et al., Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01:2014, 2014 https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/ Popovich, V., 2011. Breakage issues in silicon solar wafers and cells. Photovoltaics International 12 (May), 49–57.
possibile effetto di mismatching		
Surriscaldamento dei moduli conseguente ad Hot Spot Un hot spot si verifica quando la temperatura di un sistema fotovoltaico aumenta molto e potenzialmente può provocare un incendio su vasta scala se non viene rilevato tempestivamente. Nella maggior parte dei casi, un hot spot influisce sulle prestazioni e sulla vita del modulo. Un hot spot fault è di tipo mismatch ed è causato da una distribuzione squilibrata di potenza nelle celle fotovoltaiche di un modulo. Le celle interessate da un hot spot vengono polarizzate inversamente e agiscono quindi come un carico, consumando la potenza generata dalle altre stringhe/array, aumentando la temperatura delle celle interessate. Surriscaldamenti locali possono provocare un possibile effetto di mismatching	DATI SPERIMENTALI Principali pattern visibili tramite immagini ad infrarosso e loro associazione ai possibili guasti del sistema fotovoltaico	Köntges M., Kurtz S., Packard C., Jahn U., Berger K. A., Kato K., Friesen T., Liu H., Van Iseghem M., et al., Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01:2014, 2014 <u>https://iea-pvps.org/key-topics/review-of-failures-of-photovoltaic-modules-final/</u>
Corto circuito	METODOLOGIA	Jiang, L.L., Maskell, D.L., 2015. Automatic fault
		detection and diagnosis for photovoltaic systems

Causato da una cattiva connessione delle celle o da difetti connessi alla produzione della cella.	Descrizione del fault e implementazione di una metodologia per identificarlo	using combined artificial neural network and analytical based methods. In: 2015 International Joint Conference on Neural Networks. IJCNN.
Guasto da circuito aperto senza/con diodo di bypass Causato da una cattiva connessione tra le celle PV, hot spot, rottura di celle, cablaggio obsoleto, connettori non correttamente fissati nella box di giunzione, ecc.	METODOLOGIA Descrizione del fault e implementazione di una metodologia per identificarlo	Jiang, L.L., Maskell, D.L., 2015. Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural network and analytical based methods. In: 2015 International Joint Conference on Neural Networks. IJCNN. Chine, W., Mellit, A., Pavan, A.M., Lughi, V., 2015. Fault diagnosis in photovoltaic arrays. In: 2015 International Conference on Clean Electrical Power. ICCEP, pp. 67–72.
Guasto al diodo di bypass Il diodo di bypass ha un ruolo importante nel compensare le perdite di potenza e ridurre l'effetto dell'ombreggiamento in un modulo, e funge anche da dispositivo di protezione per prevenire la distruzione del modulo in caso di un hot spot fault o altri guasti che invertono la polarizzazione del modulo. Un guasto al diodo di bypass si può verificare quando il diodo è in cortocircuito o aperto.	METODOLOGIA Descrizione del fault e implementazione di una metodologia per identificarlo	 http://dx.doi.org/10.1109/ICCEP.2015.7177602. Jiang, L.L., Maskell, D.L., 2015. Automatic fault detection and diagnosis for photovoltaic systems using combined artificial neural network and analytical based methods. In: 2015 International Joint Conference on Neural Networks. IJCNN. Chine, W., Mellit, A., Pavan, A.M., Lughi, V., 2015. Fault diagnosis in photovoltaic arrays. In: 2015 International Conference on Clean Electrical Power. ICCEP, pp. 67–72. http://dx.doi.org/10.1109/ICCEP.2015.7177602.
Guasto negli array PV Connessione non intenzionale a livello di singola stringa o in stringhe adiacenti.	INFORMAZIONI GENERALI Descrizione del fault e delle sue cause	Alam, M.K., Khan, F., Johnson, J., Flicker, J., 2015. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques. IEEE J. Photovolt. 5 (3), 982–997. Zhao, Y., (2010). (thesis). Fault Analysis in Solar Photovoltaic Arrays. The Department of Electrical and Computer Engineering.
Guasto a terra Può verificarsi quando i conduttori che non trasportano corrente (come le strutture di montaggio dei moduli fotovoltaici, i telai, ecc.) sono esposti a un conduttore che trasporta corrente (current- carrying conductor - CCC). L'esposizione di conduttori che non trasportano corrente a un CCC è causata dal deterioramento dell'isolamento, dalla corrosione, dal taglio di un filo o da un collegamento scadente. I conduttori che non trasportano corrente in un sistema fotovoltaico dovrebbero essere	INFORMAZIONI GENERALI Descrizione del fault e delle sue cause	Alam, M.K., Khan, F., Johnson, J., Flicker, J., 2015. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques. IEEE J. Photovolt. 5 (3), 982–997. Zhao, Y., (2010). (thesis). Fault Analysis in Solar Photovoltaic Arrays. The Department of Electrical and Computer Engineering.

collegati a un conduttore/attrezzatura di messa a terra, per evitare la possibile elettrocuzione di persone o animali. Tuttavia, un ground fault può verificarsi anche se un conduttore di messa a terra si collega accidentalmente a un CC		
Guasto "Line-to-Line" I guasti line-to-line fault sono causati da cortocircuiti non voluti tra due potenziali in un array fotovoltaico, tra due stringhe adiacenti o all'interno della stessa stringa. Essi possono essere provocati da una connessione non intenzionale tra conduttori che	INFORMAZIONI GENERALI Descrizione del fault e delle sue cause	 Alam, M.K., Khan, F., Johnson, J., Flicker, J., 2015. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques. IEEE J. Photovolt. 5 (3), 982–997. Zhao, Y., (2010). (thesis). Fault Analysis in Solar Photovoltaic Arrays. The Department of Electrical and Computer Engineering.
trasportano corrente (CCC) e i conduttori di terra/neutro.		
Guasto alla "box di giunzione" Una "box di giunzione" protegge il cablaggio tra le stringhe di pannelli fotovoltaici e un terminale esterno. I guasti/malfunzionamenti alla box sono causati da errori umani, inclusi il fissaggio insufficiente della giunzione al pannello posteriore, un cablaggio scadente, un montaggio inadeguato, penetrazione dell'umidità nei connettori.	INFORMAZIONI GENERALI Descrizione del fault e delle sue cause	Kalejis J., Junction box wiring and connector durability issues in photovoltaic modules, 2014 - https://doi.org/10.1117/12.2063488
Guasti da arco elettrico Causato dalla presenza di un gap tra CCC come risultato della corrosione dei connettori, danneggiamento della cella, disconnessione della saldatura, ecc. o dalla rottura dell'isolamento	Descrizione del fault e delle sue cause	Alam, M.K., Khan, F., Johnson, J., Flicker, J., 2015. A comprehensive review of catastrophic faults in PV arrays: Types, detection, and mitigation techniques. IEEE J. Photovolt. 5 (3), 982–997.
Guasto di tipo "Bridging" Bassa resistenza nelle connessioni tra i cablaggi dei moduli PV.	DATI SIMULATIVI Dati da simulazione dell'occorrenza di questo tipo di guasto.	Kumar S., Selvakumar I., Detection of the faults in the photovoltaic array under normal and partial shading conditions, 2017 – DOI: 10.1109/IPACT.2017.8244890
Guasti al sistema di controllo MPPT Causato dal malfunzionamento nel controllore di carica del MPPT o dal sensore del MPPT.	DATI SIMULATIVI Dati da simulazione dell'occorrenza di questo tipo di guasto.	Mohamed M. Badr; Mostafa S. Hamad; Ayman S. Abdel-Khalik; Ragi A. Hamdy, Fault Detection and Diagnosis for Photovoltaic Array Under Grid Connected Using Support Vector Machine, 2019 – DOI: 10.1109/CPERE45374.2019.8980103
Guasto all'inverter	DATI SIMULATIVI	Chan, F., Calleja, H., 2006. Reliability: a new approach in design of inverters for PV systems. In:

Causato da	Indagine sull'affidabilità	Proceedings of the 10th IEEE International Power
malfunzionamento/guasto di un	dei diversi tipi di inverter	Electronics Congress. CIEP '06, pp. 97–102
qualunque componente		
dell'inverter come IGBT o		
capacitori		
Guasto alle linee	INFORMAZIONI GENERALI	National Academies of Sciences, Engineering, and
Causato da interruzioni di linea, guasti alle apparecchiature, servizi di manutenzione, configurazione della rete, incidente, errore umano, ecc.	Descrizione del fault e delle sue cause	Medicine. 2017. Enhancing the Resilience of the Nation's Electricity System. Washington, DC: The National Academies Press. https://doi.org/10.17226/24836.
Guasto da fulmini	MODELLO	Ibrahim Hetita, Amr S. Zalhaf,, Diaa-Eldin A.
Causato da fulmini	Modellazione del comportamento di un sistema PV in presenza di fulmini	Mansour, Yang Han , Ping Yang, Congling Wang, Modeling and protection of photovoltaic systems during lightning strikes: A review. 2022 - https://doi.org/10.1016/j.renene.2021.11.083
Guasti alla cella fotovoltaica	DATI SPERIMENTALI	Köntges M., Kurtz S., Packard C., Jahn U., Berger K.
	Principali pattern visibili tramite immagini ad elettroluminescenza e loro associazione ai possibili guasti del sistema fotovoltaico	A., Kato K., Friesen T., Liu H., Van Iseghem M., et al., Review of Failures of Photovoltaic Modules, Report IEA-PVPS T13-01:2014, 2014 <u>https://iea-pvps.org/key-topics/review-of-</u> <u>failures-of-photovoltaic-modules-final/</u>

Tabella 2: Analisi di anomalie e guasti associati ai generatori eolici		ssociati ai generatori eolici
Tipologia di guasto	Dati e informazioni forniti dalla fonte	Fonti
Guasto ai componenti del generatore eolico	INFORMAZIONI GENERALI Descrizione del fault e indicazione dei valori mediani di failure rate e downtime. INFORMAZIONI GENERALI Descrizione di sistemi di diagnostica e tecniche di controllo	Cuong Dao, Behzad Kazemtabrizi, Christopher Crabtree, Wind turbine reliability data review and impacts on levelised cost of energy, Wind Energy, Volume22, Issue12, December 2019, Pages 1848- 1871 - https://doi.org/10.1002/we.2404 S. S and S. A. J. Mary, "Fault Diagnosis and Control Techniques for Wind Energy Conversion System: A Systematic Review," 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), Kannur, India, 2022, pp. 700-704, doi: 10.1109/ICICICT54557.2022.9917722. H. Gu, W. Y. Liu, Q. W. Gao, and Y. Zhang, "A review on wind turbines gearbox fault diagnosis methods," Journal of Vibroengineering, Vol. 23, No. 1, pp. 26–43, Jan. 2021, https://doi.org/10.21595/ive.2020.20178

Tabella3: Analisi di anomalie e guasti per gli Elettrolizzatori			
Tipologia di guasto	Dati e informazioni forniti dalla fonte	Fonti	

Rottura della membrana	DATI SPERIMENTALI	P. Millet, A. Ranjbari, F. De Guglielmo, S. A.
Perforazione della membrana a causa di imperfezioni in fase di produzione	Risultati sperimentali sulla rottura della membrana in diverse condizioni di densità di corrente.	Grigoriev, and F. Auprêtre, "Cell failure mechanisms in PEM water electrolyzers," Int J Hydrogen Energy, vol. 37, no. 22, pp. 17478– 17487, 2012, doi: 10.1016/j.ijhydene.2012.06.017.
Rottura della membrana	DATI SPERIMENTALI	N. Li, S. S. Araya, and S. K. Kær, "Investigating low
Degradazione della membrana dovuta ad assottigliamento per dissoluzione del catalizzatore	Risultati sperimentali sulla rottura della membrana in diverse condizioni, a carico costante e con cicli di carico.	and high load cycling tests as accelerated stress tests for proton exchange membrane water electrolysis," Electrochim Acta, vol. 370, p. 137748, Feb. 2021, doi: 10.1016/j.electacta.2021.137748.
Cross-over dell'idrogeno	METODOLOGIA	E. Kuhnert, M. Heidinger, D. Sandu, V. Hacker, and
Imperfezioni di fabbricazione della membrana	Descrizione di una metodologia di stress test accelerati per studiare il fenomeno di cross-over dell'idrogeno.	M. Bodner, "Analysis of PEM Water Electrolyzer Failure Due to Induced Hydrogen Crossover in Catalyst-Coated PFSA Membranes," Membranes (Basel), vol. 13, no. 3, pp. 1–17, 2023, doi: 10.3390/membranes13030348.
Disattivazione del catalizzatore	DATI SPERIMENTALI	S. Siracusano, V. Baglio, N. Van Dijk, L. Merlo, and
Sintering del catalizzatore	Risultati sperimentali riduzione di efficienza per sintering del catalizzatore in una prova di durata Test condotti a due valori di densità di corrente.	A. S. Aricò, "Enhanced performance and durability of low catalyst loading PEM water electrolyser based on a short-side chain perfluorosulfonic ionomer," Appl Energy, vol. 192, pp. 477–489, Apr. 2017, doi: 10.1016/j.apenergy.2016.09.011.
Dispersione del catalizzatore	DATI SPERIMENTALI	N. Li, S. S. Araya, and S. K. Kær, "Investigating low
Dissoluzione del catalizzatore nella membrana polimerica	Risultati sperimentali sulla dissoluzione del catalizzatore in diverse a carico costante e con cicli di carico.	and high load cycling tests as accelerated stress tests for proton exchange membrane water electrolysis," Electrochim Acta, vol. 370, p. 137748, Feb. 2021, doi: 10.1016/j.electacta.2021.137748.
		S. A. Grigoriev, K. A. Dzhus, D. G. Bessarabov, and P. Millet, "Failure of PEM water electrolysis cells: Case study involving anode dissolution and membrane thinning," Int J Hydrogen Energy, vol. 39, no. 35, pp. 20440–20446, 2014, doi: 10.1016/i.jihvdene.2014.05.043.

Tabella 4: Analisi di anomalie e guasti per le Fuel Cell		
Tipologia di guasto	Dati e informazioni forniti dalla fonte	Fonti
Rottura della membrana Crepa della membrana causata da stress tensili	INFORMAZIONI GENERALI Caratterizzazione della rottura di membrane per perforazione e formazioni di crepe.	Y. Singh, F. P. Orfino, M. Dutta, and E. Kjeang, "3D Failure Analysis of Pure Mechanical and Pure Chemical Degradation in Fuel Cell Membranes," J Electrochem Soc, vol. 164, no. 13, pp. F1331– F1341, 2017, doi: 10.1149/2.0451713jes.
	METODOLOGIA E DATI Descrizione di stress test ciclici di idratazione- disidratazione, e relativi dati sperimentali su	A. Sadeghi Alavijeh et al., "Effect of hygral swelling and shrinkage on mechanical durability of fuel cell membranes," J Power Sources, vol. 427, pp. 207– 214, Jul. 2019, doi: 10.1016/j.jpowsour.2019.04.081.

	deformazione e cracking	
Rottura della membrana	MODELLO	Y. Hu, X. Xu, and W. Wang, "A new cavity profile
Foratura della membrana	Modello FEM (elementi finiti) della perforazione di una membrana dovuta alla pressione di idrogeno.	for a diaphragm compressor used in hydrogen fueling stations," Int J Hydrogen Energy, vol. 42, no. 38, pp. 24458–24469, Sep. 2017, doi: 10.1016/j.ijhydene.2017.08.058.
Degradazione della membrana	DATI SPERIMENTALI	J. Healy et al., "Aspects of the chemical
Assottigliamento della membrana a causa del rilascio di fluoridi	Risultati sperimentali sulla degradazione chimica della membrana.	degradation of PFSA ionomers used in PEM fuel cellsx," Fuel Cells, vol. 5, no. 2. pp. 302–308, Apr. 2005. doi: 10.1002/fuce.200400050.
	Caratterizzazione della membrana dopo il fenomeno di degradazione.	S. Shi et al., "Fatigue crack propagation behavior of fuel cell membranes after chemical degradation," Int J Hydrogen Energy, vol. 45, no. 51, pp. 27653–27664, Oct. 2020, doi: 10.1016/j.ijhydene.2020.07.113.
Cross-over dell'idrogeno	METODOLOGIA	K. Panha, M. Fowler, X. Z. Yuan, and H. Wang,
Stress della membrana	Descrizione di una metodologia di stress test accelerati, sia per test di durata che basati sull'umidificazione ciclica dell'idrogeno, per caratterizzare il fenomeno di rottura della membrana con conseguente	"Accelerated durability testing via reactants relative humidity cycling on PEM fuel cells," Appl Energy, vol. 93, pp. 90–97, 2012, doi: 10.1016/j.apenergy.2011.05.011.
Deterioramento del catalizzatore		P I Ferreira et al "Instability of Pt/C
Agglomerazione delle particelle di platino (Sintering)	Risultati sperimentali sul fenomeno di sintering del catalizzatore in una prova di durata e dopo cicli di potenziale variabile. Caratterizzazione del catalizzatore dopo le prove	Electrocatalysts in Proton Exchange Membrane Fuel Cells," J Electrochem Soc, vol. 152, no. 11, p. A2256, 2005, doi: 10.1149/1.2050347.
Deterioramento del catalizzatore	DATI SPERIMENTALI	A. Hassan, V. A. Paganin, and E. A. Ticianelli,
Contaminazione con monossido di carbonio	Risultati sperimentali sul fenomeno di disattivazione del catalizzatore per avvelenamento da CO. Dati raccolti su diversi layer catalitici e a diverse temperature di cella.	"Investigation of carbon supported PtW catalysts as CO tolerant anodes at high temperature in proton exchange membrane fuel cell," J Power Sources, vol. 325, pp. 375–382, Sep. 2016, doi: 10.1016/j.jpowsour.2016.06.043
Deterioramento del catalizzatore	DATI SPERIMENTALI	K. H. Kangasniemi, D. A. Condit, and T. D. Jarvi,
Ossidazione del supporto di carbonio	Caratterizzazione del fenomeno di ossidazione del supporto carbonioso. Viene evidenziato l'effetto del tempo di ossidazione e del potenziale.	"Characterization of Vulcan Electrochemically Oxidized under Simulated PEM Fuel Cell Conditions," J Electrochem Soc, vol. 151, no. 4, p. E125, 2004, doi: 10.1149/1.1649756.
Allagamento del catodo	METODOLOGIA	W. He, G. Lin, and T. Van Nguyen, "Diagnostic Tool

Potrodiffusiono doll'acqua vorso	Descriziono di un	h	Mombrane Eucl Colls " AIChE Journal vol 40 no
Retroutinusione den acqua verso	Descrizione un un	a	Wellibralle Fuel Cells, Alche Journal, vol. 49, 110.
il catodo	metodologia per rilevare	il	12, pp. 3221–3228, Dec. 2003, doi:
	fenomeno di livello d	ik	10.1002/aic.690491221.
	saturazione della cella sul	а	
	base della permeabilit	à	
	relativa.		

Tabella 5: Analisi di anomalie e guasti per le Batterie			
Tipologia di guasto	Dati e informazioni forniti dalla fonte	Fonte	
Corto circuito esterno			
provocato da cause incidentali			
Corto circuito interno			
provocato da impurezze, dentriti, guasto del separatore, impatto esterno, BMS guasto			
Sovra-tensione	DATI SPERIMENTALI		
provocato da superamento della tensione massima in fase di ricarica	Test sperimentali e relativi risultati con riferimento a: • prove di sovraccarica dovuta ad un guasto	Report di Ricerca di Sistema (affidatario ENEA): C. Di Bari, E. Rossi, S. Constà, F.Sacco "Definizione di procedure di prova di overvoltage e cortocircuito	
Sotto-tensione	del sistema di carica	su sistemi di accumulo litio-ione"	
provocato da superamento al ribasso della tensione minima	cortocircuito esterno ed interno su sistemi di accumulo litio-ione	RUS_PAR2010_170	
Sovra-carica			
provocato da superamento della corrente massima			
Auto-riscaldamento			
provocato da deposito di Litio metallico dovuto alla sovra-carica			
Anomalie e guasti delle batterie agli ioni di litio	CLASSIFICAZIONE DI TECNICHE SPERIMENTALI Sintesi delle tecniche sperimentali per lo studio dei guasti delle batterie agli ioni di litio (voltammetria ciclica, spettroscopia a dispersione di energia, spettroscopia di	Lin Liu, "Data-Driven Prognosis of Multiscale and Multiphysics Complex System Anomalies: Its Application to Lithium-ion Batteries Failure Detection", 2023, Journal of The Electrochemical Society, 170 050525, DOI 10.1149/1945- 7111/acd300	
	impedenza elettrochimica, microscopia e microlavorazione a fascio ionico focalizzato, microscopia elettrochimica a scansione, imaging termico, microscopia		

elettronica a trasmissione, tempo di -Spettrometria di massa di ioni secondari in volo, microscopia termoionica a scansione, spettroscopia ad assorbimento di micro raggi X vicino al bordo, microscopia ottica a scansione in campo vicino)	
INFORMAZIONI GENERALI	
CLASSIFICAZIONE DI MODELLI	
Approcci basati su modello: modelli multiscala, approssimazione del mezzo effettivo autoconsistente, Teoria dell'omogeneizzazione, metodo multiscala eterogeneo (HMM), Metodo variazionale multiscala (VMM)	
Approcci basati su modelli data-driven: può convertire dati di grandi dimensioni in dati di piccole dimensioni; applicabile a sistemi senza una conoscenza preliminare dei parametri; può essere utilizzato per il rilevamento di anomalie, la diagnosi dei guasti e la previsione SOH; può utilizzare metodi statistici o ML.	

Tabella 6: Analisi dei principali guasti associati ai sistemi di conversione DC/DC e DC/AC			
Tipologia di guasto	Dati e informazioni forniti dalla fonte	Fonti	
Guasto alla componentistica dello stadio di potenza dei convertitori I componenti switching (MOSFET; IGBT), capacitivi ed induttivi dei convertitori DC/DC e DC/AC	DATI SIMULATIVIAnalisidell'impattodeidiversi fattori di stress e deifenomenid'invecchiamentosui	G. Graditi and G. Adinolfi, "Temperature influence on photovoltaic power optimizer components reliability," International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 2012, pp.	

possono rompersi per fattori termici, elettrici, ambientali e per invecchiamento.	componenti di convertitori DC/DC e DC/AC per applicazioni fotovoltaiche.	1113-1118,doi:10.1109/SPEEDAM.2012.6264560.Y. Hu, P. Shi, H. Li and C. Yang, "Health Condition Assessment of Base-Plate Solder for Multi-Chip IGBT Module in Wind Power Converter," in IEEE Access, vol. 7, pp. 72134-72142, 2019, doi:
		10.1109/ACCESS.2019.2918029. M. Khalil, P. Soulatiantork, "Reliability assessment of PV inverters", 14th IMEKO TC10 Workshop Technical Diagnostics New Perspectives in Measurements, Tools and Techniques for system's reliability, maintainability and safety Milan, Italy, June 27-28, 2016.
Guasti dovuti a problematiche dei circuiti stampati e piste di collegamento trai i diversi componenti elettronici I circuiti stampati possono presentare delaminazioni, crepe e anche deterioramento delle saldature e delle piste di collegamento trai i diversi componenti elettronici. Tali problematiche possono determinare il malfunzionamento o il mancato funzionamento dei convertitori.	METODOLOGIA Metodo di valutazione dei fenomeni di aging sulle piste di collegamento degli IGBT. DATI SPERIMENTALI Forme d'onda sperimentali ottenute dai test accelerati d'invecchiamento condotti sulle piste di collegamento di un IGBT.	Z. Hu, X. Ge, D. Xie et alii, "An Aging-Degree Evaluation Method for IGBT Bond Wire with Online Multivariate Monitoring," Energies, vol. 12, no. 20, p. 3962, Oct. 2019, doi: 10.3390/en12203962.
Corto circuito ai terminali del convertitore Il verificarsi di un corto circuito ai terminali di un convertitore può essere causato da un guasto tra le polarità del sistema a monte o da un guasto a terra.	DATI SPERIMENTALI (FORME D'ONDA) Descrizione e rappresentazione delle condizioni operative di un convertitore DC/AC in presenza di un corto circuito ai suoi terminali.	ABB Technical Application Papers, "Faults in LVDC microgrids with front-end converters",2015.
Guasto a terra ai terminali del convertitore Un guasto a terra ai conduttori d'ingresso o uscita di un convertitore può essere causato dalla perdita di isolamento dei cavi, da un'azione di natura meccanica (tranciare l'isolante di un cavo), da agenti ambientali (umidità, sostanze corrosive) o da sovratensioni.	DATI SPERIMENTALI (FORME D'ONDA) Descrizione e rappresentazione degli andamenti delle grandezze elettriche del convertitore DC/AC (e dell'impianti di cui esso fa parte) nella condizione di guasto a terra dei terminali d'ingresso o d'uscita.	ABB Technical Application Papers, "Faults in LVDC microgrids with front-end converters",2015.

Tabella 7: analisi di anomalie e guasti per apparati di monitoraggio

Tipologia di guasto	Dati e informazioni forniti dalla fonte	Fonti
Guasto meccanico del sensore dell'apparato di monitoraggio Degrado dei materiali costituenti l'apparato	METODOLOGIA Metodo per lo studio delle performance di un sensore sottoposto a degrado	Jiang, L., Djurdjanovic, D., Ni, J., Lee, J. (2006). Sensor Degradation Detection in Linear Systems. In: Mathew, J., Kennedy, J., Ma, L., Tan, A., Anderson, D. (eds) Engineering Asset Management. Springer, London. https://doi.org/10.1007/978-1-84628-814-2_138
Guasto meccanico del sensore dell'apparato di monitoraggio Vibrazioni e shock esterni a cui può essere sottoposto l'apparato	INFORMAZIONI GENERALI Descrizione degli effetti dovuti alle vibrazioni su un sensore	F. Hau, F. Baumgärtner and M. Vossiek, "Influence of vibrations on the signals of automotive integrated radar sensors," 2017 IEEE MTT-S International Conference on Microwaves for Intelligent Mobility (ICMIM), Nagoya, Japan, 2017, pp. 159-162, doi: 10.1109/ICMIM.2017.7918881.
Guasto elettrico del sensore dell'apparato di monitoraggio Perdita di isolamento	METODOLOGIA Metodologia per la stima della perdita di isolamento di un sensore	Yunbing Huang, Janos Gertler, Thomas J. McAvoy, "Sensor and actuator fault isolation by structured partial PCA with nonlinear extensions", Journal of Process Control, Volume 10, Issue 5, 2000, Pages 459-469, ISSN 0959-1524, https://doi.org/10.1016/S0959-1524(00)00021-4. Xiaodong Zhang, T. Parisini and M. M. Polycarpou, "Sensor bias fault isolation in a class of nonlinear systems," in IEEE Transactions on Automatic Control, vol. 50, no. 3, pp. 370-376, March 2005, doi: 10.1109/TAC.2005.843875.
Rumore nel sensore	INFORMAZIONI GENERALI Review delle principali cause di rumore in un sensore	 Z. Q. Lei, G. J. Li, W. F. Egelhoff, P. T. Lai and P. W. T. Pong, "Review of Noise Sources in Magnetic Tunnel Junction Sensors," in IEEE Transactions on Magnetics, vol. 47, no. 3, pp. 602-612, March 2011, doi: 10.1109/TMAG.2010.2100814. Reza Sharifi, Reza Langari, "Isolability of faults in sensor fault diagnosis, Mechanical Systems and Signal Processing", Volume 25, Issue 7, 2011, Pages 2733-2744, ISSN 0888-3270, https://doi.org/10.1016/i.vmssp.2011.02.015.
Variazione del guadagno nel sensore	METODOLOGIA Metodo per lo studio dell'errore di gain di un sensore	 F. Grouz, L. Sbita and M. Boussak, "Current sensors gain faults detection and isolation based on an adaptive observer for PMSM drives," 10th International Multi-Conferences on Systems, Signals & Devices 2013 (SSD13), Hammamet, Tunisia, 2013, pp. 1-6, doi: 10.1109/SSD.2013.6564061. Youqing Wang, Donghua H. Zhou, "Sensor Gain Fault Diagnosis for a Class of Nonlinear Systems", European Journal of Control, Volume 12, Issue 5, 2006, Pages 523-535, ISSN 0947-3580.
Perdita di calibrazione del sensore	METODOLOGIA Metodo per la diagnosi dell'errore dovuto ad una perdita di calibrazione di un sensore	https://doi.org/10.3166/ejc.12.523-535. Q. Yang and J. Wang, "Multi-Level Wavelet Shannon Entropy-Based Method for Single-Sensor Fault Location," Entropy, vol. 17, no. 12, pp. 7101– 7117, Oct. 2015, doi: 10.3390/e17107101.

Anomalia a supeti nei conceri a		I live at al. "Foult Test Analysis of Abnormal
Anomalie e guasti nei sensori e negli apparati di misura/monitoraggio	METODOLOGIA Metodi e modelli matematici per la rilevazione dei guasti	L. Liu et al., "Fault Test Analysis of Abnormal Remaining Amount of Smart Meter," 2023 Panda Forum on Power and Energy (PandaFPE), Chengdu, China, 2023, pp. 1366-1370, doi: 10.1109/PandaFPE57779.2023.10140559.
		K. Jankowska and M. Dybkowski, "Experimental Analysis of the Current Sensor Fault Detection Mechanism Based on Neural Networks in the PMSM Drive System," Electronics, vol. 12, no. 5, p. 1170, Feb. 2023, doi: 10.3390/electronics12051170.
		J. Lu, E. Zhu, H. Zhang, S. Hou, J. Dou and H. Du, "Smart Meter Fault Diagnosis Model Based on DBN-LSSVM Feature Fusion," 2023 5th Asia Energy and Electrical Engineering Symposium (AEEES), Chengdu, China, 2023, pp. 628-633, doi: 10.1109/AEEES56888.2023.10114110.
		L. Helong, Y. Haibo and Y. Jinshuai, "Intelligent Energy Meter Fault Prediction Based on Machine Learning," 2019 15th International Conference on Computational Intelligence and Security (CIS), Macao, China, 2019, pp. 296-300, doi: 10.1109/CIS.2019.00069.

Tabella 8: analisi di anomalie e guasti per apparati di comunicazione		
Tipologia di guasto	Dati e informazioni forniti dalla fonte	Fonti
Alterazione nell'integrità dei dati	METODOLOGIA	F. Li and B. Luo, "Preserving data integrity for
Perdita totale o parziale oppure alterazione del pacchetto di dati trasmesso	Metodi per verificare l'integrità del dato trasmesso	smart grid data aggregation," 2012 IEEE Third International Conference on Smart Grid Communications (SmartGridComm), Tainan, Taiwan, 2012, pp. 366-371, doi: 10.1109/SmartGridComm.2012.6486011.
		H. Kim, I. Hwang, J. Lee, H. Y. Yeom and H. Sung, "Concurrent and Robust End-to-End Data Integrity Verification Scheme for Flash-Based Storage Devices," in IEEE Access, vol. 10, pp. 36350-36361, 2022, doi: 10.1109/ACCESS.2022.3163729.
Malfunzionamento del ricevitore	MODELLO	F. Gardner, "A BPSK/QPSK Timing-Error Detector
Malfunzionamento del ricevitore, elevati tempi di ricezione	Algoritmo per l'analisi del tempo di ricezione	for Sampled Receivers," in IEEE Transactions on Communications, vol. 34, no. 5, pp. 423-429, May 1986, doi: 10.1109/TCOM.1986.1096561.
		W. Yuan, Q. Shi, N. Wu, Q. Guo and X. Huang, "Gaussian Message Passing Based Passive Localization in the Presence of Receiver Detection Failures," 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 2018, pp. 1-5, doi: 10.1109/VTCSpring.2018.8417730
Guasti del supporto di	METODOLOGIA	Xinyu Dou et al., "Demonstration of chaotic-laser
comunicazione guasti dovuti a		based WDM-PON secure optical communication
rottura, eccessiva curvatura,		and real-time online fiber-fault detection and

connettori o rottura delle giunzioni	Metodo per l'analisi e la localizzazione del guasto	location," 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, 2015, pp. 1-3, doi: 10.1109/OECC.2015.7340182. Chun-Kit Chan, F. Tong, Lian-Kuan Chen, Keang-Po Ho and D. Lam, "Fiber-fault identification for branched access networks using a wavelength- sweeping monitoring source," in IEEE Photonics Technology Letters, vol. 11, no. 5, pp. 614-616, May 1999, doi: 10.1109/68.759416.
	METODOLOGIA Metodi che utilizzano apparati diagnostici supplementari per la ricerca dell'errore nella comunicazione attraverso, rispettivamente, l'utilizzo di apparati hardware di diagnosi (riflettometro ottico, generatore di segnali diagnostici a diversa lunghezza d'onda, dispositivi di sniffing dei dati trasmessi)	 M. El-Sayed, P. J. Ibrahim and F. Gunzer, "Investigation of the precision regarding fiber fault location with a commercial Optical Time Domain Reflectometer," 7th International Symposium on High-capacity Optical Networks and Enabling Technologies, Cairo, Egypt, 2010, pp. 237-241, doi: 10.1109/HONET.2010.5715781. Chun-Kit Chan, F. Tong, Lian-Kuan Chen, Keang-Po Ho and D. Lam, "Fiber-fault identification for branched access networks using a wavelength- sweeping monitoring source," in IEEE Photonics Technology Letters, vol. 11, no. 5, pp. 614-616, May 1999, doi: 10.1109/68.759416. S. Ansari, S. G. Rajeev and H. S. Chandrashekar, "Packet sniffing: a brief introduction," in IEEE Potentials, vol. 21, no. 5, pp. 17-19, Dec. 2002-Jan. 2003, doi: 10.1109/MP.2002.1166620.
Errori nella comunicazione	METODOLOGIA Metodi basati su software diagnostici per la ricerca dell'errore nella comunicazione mediante: algoritmi avanzati per il continuous big data integrity checking, utilizzo di support vector machine per l'individuazione del fault, intelligenza artificiale mediante tecnica machine learning	 H. Yu, Q. Hu, Z. Yang and H. Liu, "Efficient Continuous Big Data Integrity Checking for Decentralized Storage," in IEEE Transactions on Network Science and Engineering, vol. 8, no. 2, pp. 1658-1673, 1 April-June 2021, doi: 10.1109/TNSE.2021.3068261. Z. Hui-Ping, H. Hong-Yan and G. Meng-Xia, "Research of Fiber-Optical Fault Diagnosis Based on Support Vector Machine (SVM) Mining," 2014 Fifth International Conference on Intelligent Systems Design and Engineering Applications, Hunan, China, 2014, pp. 803-807, doi: 10.1109/ISDEA.2014.251. K. Abdelli, J. Y. Cho, F. Azendorf, H. Griesser, C. Tropschug and S. Pachnicke, "Machine-learning- based anomaly detection in optical fiber monitoring," in Journal of Optical Communications and Networking, vol. 14, no. 5, pp. 365-375, May 2022, doi: 10.1364/JOCN.451289

APPENDICE 2

Tabella 9: dataset contenenti i guasti associati ai sistemi fotovoltaici		
Nome dataset	Dati e informazioni forniti dalla fonte	Fonti
Fault Detection Dataset in Photovoltaic Farms	DATASET SIMULATO Un impianto PV simulato da 250-kW è stato utilizzato per realizzare un dataset di guasti. Sono stati considerati tre tipi di guasto (string fault, string-to-ground fault, string-to-string fault) oltre al caso di funzionamento normale	https://www.kaggle.com/datasets/amrezzeldinra shed/fault-detection-dataset-in-photovoltaic- farms
PVEL-AD dataset	DATASET REALE Dataset contenente 36543 immagini ad elettroluminescenza con diversi difetti e sfondo. Il dataset contiene sia immagini di pannelli privi di problemi e pannelli contenenti anomalie suddivise in 10 categorie.	https://ieee- dataport.org/documents/photovoltaic-cell- anomaly-detection-dataset [da Binyi et al., 2022, https://doi.org/10.1109/TII.2022.3162846]
GPVS-Faults	DATASET REALE Dati ottenuti da esperimenti di laboratorio che hanno inserito manualmente, a metà dell'esperimento, i seguenti faults: array fault, inverter fault, grid anomaly, feedback sensor fault, MPP controller fault	https://data.mendeley.com/datasets/n76t439f65 [da Bakdi et al., 2020, https://doi.org/10.1016/j.ijepes.2020.106457]
PV System Thermography Dataset	DATASET REALE Il dataset è composto da 120 immagini termiche ottenute da un drone in volo su un impianto reale.	https://tandf.figshare.com/articles/dataset/Onlin e_automatic_anomaly_detection_for_photovolta ic_systems_using_thermography_imaging_and_l ow_rank_matrix_decomposition/15123655/1
	Questo dataset è stato successivamente esteso da Marcos Gabriel che ha utilizzato degli strumenti per annotare le immagini ed ha etichettato i faults (https://www.kaggle.com/ datasets/marcosgabriel/p hotovoltaic-system- thermography)	[Da Wang et al, 2021, https://doi.org/10.1080/00224065.2021.194837 2

Dataset relativi ad anomalie e guasti per componente

Mismatching and partial shading	DATASET SIMULATO E	https://zenodo.org/record/4781151
dataset	REALE Il dataset è composto da 10000 curve I-V simulate (5000 in condizioni operative uniformi e 5000 in condizioni di mismatch) e 2000 curve I-V reali (1000 associabili a condizioni di corretto funzionamento e 1000 associabili a errato funzionamento)	[Da Piliougine et at., 2022, https://doi.org/10.1016/j.solener.2022.03.026]
Partial Shading and Fault Simulation Dataset	DATASET SIMULATO Il dataset è stato realizzato utilizzando un modello a 2 diodi. Il numero totale di pannelli è 10 e sono generati i segnali al variare della temperatura e le condizioni di partial shading.	https://ieee-dataport.org/documents/partial- shading-and-fault-simulation-dataset- photovoltaics-module
PV Fault Dataset	DATASET SIMULATO A PARTIRE DA DATI REALI II dataset si compone di dati reali ottenuti da un impianto PV composto da 2 stringhe con 8 C6SU- 330P Moduli PV ognuno. I guasti di tipo degradazione, corto circuito e circuito aperto sono inseriti artificialmente mentre l'ombreggiamento è naturale (dovuto ad un palazzo nelle vicinanze).	https://github.com/clayton-h- costa/pv fault dataset [Da Lazzaretti et al., 2020, https://doi.org/10.3390/s20174688]
Elpv dataset	DATASET REALE Contiene 2624 immagini di Elettroluminescenza 300x300 pixel in toni di grigio (8 bit) sia relative a celle solari funzionanti che danneggiate con vari gradi di degradazione. [Buerhop-Lutz et al., 2018,	https://github.com/zae-bayern/elpv-dataset
PVWatts dataset	10.4229/35thEUPVSEC201 82018-5CV.3.15] DATASET SIMULATO Utilizzando lo strumento PVWatts calculator è possibile ottenere un anno di dati sintetici, su base oraria, della produzione stimata da PV in base alle	https://pvwatts.nrel.gov/pvwatts.php

caratteristiche di impianto	
inserite. Il sistema	
permette di tener conto	
anche delle loss dovute a	
diversi fattori (ad es.,	
soiling, shading, mismatch,	
ecc.).	
Alcuni autori hanno creato	
dei dataset sintetici basati	
sui risultati ottenuti da	
PVWatts calculator e	
hanno labellato le diverse	
osservazioni secondo	
quanto descritto in [Rao et	
al., 2020,	
https://doi.org/10.1007/9	
78-3-031-02505-1]	

Tabella 10: dataset contenenti i guasti associati ai generatori eolici		
Nome dataset	Dati e informazioni forniti dalla fonte	Fonti
Wind turbine gearbox monitoring vibration analysis benchmark dataset	DATASETREALE-SIMULATONREL (National RenewableEnergyLaboratory)haraccoltoidatidaingranaggiofunzionanteedunodanneggiato.L'ingranaggiosano è statotestatosolocoldinamometromentrequellodanneggiato è statoprimatestatocoldinamometro e poi inviatoadun parco eolico per untest sul campoNel test sulcampohasubitodueeventidi perdita di olio chehannodanneggiatoicuscinettiinternieglielementidell'ingranaggio.	https://data.openei.org/submissions/738 https://www.kaggle.com/datasets/amrezzeldinra shed/fault-detection-dataset-in-photovoltaic- farms
Wind Turbine Blades Fault Diagnosis based on Vibration Dataset Analysis	DATASET REALE Il dataset contiene le misure di vibrazione uniassiale di una turbina eolica che opera a diverse velocità del vento. Contiene i dati per tre tipologie di problemi (danneggiamento della pala, degradamento della superficie della pala, e pala non equilibrata) più i dati	https://data.mendeley.com/datasets/5d7vbdp8f 7 [Ogaili et al., 2023, http://dx.doi.org/10.2139/ssrn.4431782]

	misurati in condizioni normali di funzionamento	
Vibration Signals Feature for Fault Diagnosis of wind turbine blade	DATASET REALE Il dataset contiene misure di vibrazione sia in condizioni normali che in situazioni problematiche (danneggiamento della pala, degradamento della superficie della pala, e pala non equilibrata)	https://data.mendeley.com/datasets/2kx995rscj/ 2 [Ogaili, et al., 2023, 10.17632/2kx995rscj.2] Collegato al dataset "Wind Turbine Blades Fault Diagnosis based on Vibration Dataset Analysis"
YOLO Annotated Wind Turbine Surface Damage	DATASET REALE Dataset composto da immagini della superficie delle turbine eoliche in cui i danni sono etichettati.	https://www.kaggle.com/datasets/ajifoster3/yol o-annotated-wind-turbines-586x371 Deriva da un dataset non etichettato: (https://data.mendeley.com/datasets/hd96prn3 nc) che gli autori hanno appositamente modificato come descritto in [Foster et al., 2022, 10.1109/IVMSP54334.2022.9816220]
Wind turbine fault diagnosis dataset	DATASET REALE Dataset contenente i dati misurati di diverse turbine.	https://data.mendeley.com/datasets/v9wnr4bft 9 [Wen et al., 2021, https://doi.org/10.1016/j.eswa.2021.115016] NOTA: le colonne presenti nel dataset non contengono il dettaglio del contenuto e sono in numero diverso rispetto a quanto descritto nell'articolo.
Wind turbine PMSG - Short- Circuit Fault	DATASET SIMULATO Dataset ottenuto con una frequenza di campionamento di 1 kHz attraverso la simulazione di un modello matematico descritto nell'articolo [Barros et al, 2019, https://doi.org/10.1109/IS GT-LA.2019.8895378]. II dataset così creato è stato poi utilizzato nell'articolo [Sà et al., 10.1109/ISGT- LA.2019.8895013]	https://www.kaggle.com/datasets/brunoadonis/ wind-turbine-pmsg-short-circuit-fault-mcsa
Vibration and Motor Current Dataset of Rolling Element Bearing Under Varying Speed Conditions for Fault Diagnosis	DATASET REALE Dataset contenente le misure di vibrazione, di corrente, di temperatura e acustiche, di una macchina rotante. Sono considerate le condizioni normali e i	https://data.mendeley.com/datasets/vxkj334rzv https://data.mendeley.com/datasets/x3vhp8t6h g https://data.mendeley.com/datasets/j8d8pfkvj2 [Da Jung et al., https://doi.org/10.1016/i.dib.2023.109049]

	Non è direttamente collegato alle turbine eoliche ma ad una macchina rotante. Data la dimensione del dataset è diviso in tre parti.	
Gearbox Fault Diagnosis Data	DATASET REALE Dataset contenente le vibrazioni registrate usando SpectraQuest's Gearbox Fault Diagnostics Simulator. In particolare, sono stati utilizzati 4 sensori di vibrazione in quattro diverse direzioni e al variare del carico dallo 0% al 90%. Sono inclusi due scenari: condizioni di funzionamento normale e denti rotti.	https://data.openei.org/submissions/623 NOTA: Non è direttamente collegato alle turbine eoliche ma ad un sistema di trasmissione.
EDP Open Data	DATASET REALE Storici dei guasti di una Wind Farm comprensivi dei segnali ottenuti dallo SCADA dell'impianto	https://www.edp.com/en/innovation/open- data/data

Tabella 11: modelli per ottenere dataset sintetici sui guasti associati agli elettrolizzatori		
Nome dataset	Dati e informazioni forniti dalla fonte	Fonti
	DATASET SINTETICIModellomatematicopredittivo di degradazionedella membranaNOTA:degradazionecausata da cicli di carico	S. R. Choi et al., "Life prediction of membrane electrode assembly through load and potential cycling accelerated degradation testing in polymer electrolyte membrane fuel cells," Int J Hydrogen Energy, vol. 47, no. 39, pp. 17379– 17392, May 2022, doi: 10.1016/j.ijhydene.2022.03.222.
Degradazione della membrana	DATASET SINTETICI Modello matematico predittivo delle prestazioni della cella sulla base di temperatura e carico NOTA: Meccanismo di degradazione basato sull'attacco radicalico alla membrana Curva di	M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, and F. Fouda-Onana, "Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density," FDFC2015, Ed., Tolouse (France), Feb. 2015.
	degradazione dipendente	

dalla temperatura e dal carico alla cella	
DATASET SINTETICI Modello matematico predittivo di assottigliamento della membrana	M. Chandesris, V. Médeau, N. Guillet, S. Chelghoum, D. Thoby, and F. Fouda-Onana, "Numerical modelling of membrane degradation in PEM water electrolyzer: Influence of the temperature and current density," FDFC2015, Ed., Tolouse (France), Feb. 2015.
NOTA: Curva di degradazione dipendente dalla temperatura e dal carico alla cella	

Tabella 12: modelli per ottenere dataset sintetici sui guasti associati alle Fuel Cell		
Nome dataset	Dati e informazioni forniti dalla fonte	Fonti
Degradazione della membrana	DATASET SINTETICIModellomatematicopredittivo di degradazionedella membranaIImodelloproposto èvalidato nei confronti deimeccanismidipolarizzazionedovutiafenomeni di OCV.Basatosul metodo degli elementifiniti.DATASET SINTETICIModelloModellomembranaII modello, semi-empirico,considera le perdite dicorrente, la polarizzazionedel catalizzatore e laresistenza ohmica.	 R. Singh, P. C. Sui, K. H. Wong, E. Kjeang, S. Knights, and N. Djilali, "Modeling the Effect of Chemical Membrane Degradation on PEMFC Performance," J Electrochem Soc, vol. 165, no. 6, pp. F3328– F3336, 2018, doi: 10.1149/2.0351806jes. V. Ahmadi Sarbast, "Modeling of Proton Exchange Membrane Fuel Cell Performance Degradation and Operation Life," 2021.
	DATASET SINTETICI Modello matematico predittivo di degradazione della membrana	P. Wang et al., "A novel degradation model of proton exchange membrane fuel cells for state of health estimation and prognostics," Int J Hydrogen Energy, vol. 46, no. 61, pp. 31353– 31361, Sep. 2021, doi: 10.1016/j.jibydene.2021.07.004
	Il modello considera la resistenza di polarizzazione	

	come somme di tutte le perdite per polarizzazione.	
	DATASET SINTETICI Modello matematico predittivo del fenomeno di dissoluzione del catalizzatore	Y. Ao, K. Chen, S. Laghrouche, and D. Depernet, "Proton exchange membrane fuel cell degradation model based on catalyst transformation theory," <i>Fuel Cells</i> , vol. 21, no. 3, pp. 254–268, Jun. 2021, doi: 10.1002/fuce.202100002.
	DATASET SINTETICI Modello matematico predittivo del fenomeno di dissoluzione del catalizzatore	T. Jahnke, G. A. Futter, A. Baricci, C. Rabissi, and A. Casalegno, "Physical Modeling of Catalyst Degradation in Low Temperature Fuel Cells: Platinum Oxidation, Dissolution, Particle Growth and Platinum Band Formation," <i>J Electrochem Soc</i> , vol. 167, no. 1, p. 013523, 2020, doi: 10.1149/2.0232001jes.
Degradazione del catalizzatore	Il modello considera diversi fenomeni che determinano la disattivazione del catalizzatore.	
	DATASET SINTETICI Modello matematico predittivo del fenomeno di dispersione e sintering del catalizzatore	D. Bernhard, T. Kadyk, S. Kirsch, H. Scholz, and U. Krewer, "Model-assisted analysis and prediction of activity degradation in PEM-fuel cell cathodes," <i>J Power Sources</i> , vol. 562, Apr. 2023, doi: 10.1016/j.jpowsour.2023.232771
	Il modello analizza la dispersione del catalizzatore a base di platino al catodo, e i fenomeni di agglomerazione, con conseguente riduzione dell'attività catalitica.	
Degradazione del potenziale di stack	DATASET SINTETICI Modello matematico di decadimento del potenziale dello stack Il modello determina la legge di decadimento del potenziale di stack sulla base di coefficienti di accelerazione basate sui fenomeni di start/stop, idle e sovra-richiesta di	M. Yue, S. Jemei, R. Gouriveau, and N. Zerhouni, "Review on health-conscious energy management strategies for fuel cell hybrid electric vehicles: Degradation models and strategies," Int J Hydrogen Energy, vol. 44, no. 13, pp. 6844–6861, Mar. 2019, doi: 10.1016/j.ijhydene.2019.01.190.
	potenza.	

Tabella 13: dataset contenenti i guasti associati alle Batterie

Nome dataset	Dati e informazioni forniti dalla fonte	Fonti
	DATASET SIMULATI E REALI	https://www.nasa.gov/intelligent-systems- division/discovery-and-systems- health/pcoe/pcoe-data-set-repository/
	Set di dati idonei per lo sviluppo di algoritmi da utilizzare come strumenti prognostici.	NOTA: i set di dati del NASA Data Repository sono
NASA Data Repository	Tra i vari dati a disposizione è possibile reperire dati relativi ad esperimenti sulle batterie agli ioni di litio. Questi ultimi sono stati ottenuti analizzando le fasi di carica e scarica a temperature diverse e monitorando l'impedenza come criterio di danno.	[Da: Surya, Sumukh; S, Mohan Krishna; Chhetri, Ahilya; WILLIAMSON, SHELDON (2023): Software Tools and Datasets for Battery Management System Applications. TechRxiv. Preprint https://doi.org/10.36227/techrxiv.21903531.v1]
	DATASET SINTETICI	<u>http://ieee-</u> <u>dataport.org/documents/automotive-li-ion-cell-</u>
IEEE Data Port	Data set ottenuto simulando una Cella ai polimeri di litio modello ePLB C020, con una capacità effettiva di 15 Ah, di un'auto elettrica	<u>usage-data-set</u> NOTA: IEEE Data Port è una piattaforma sicura per i ricercatori, gli analisti di dati e la comunità tecnica globale per accedere, archiviare, gestire e condividere facilmente i dati di ricerca.
		[Da: Surya, Sumukh; S, Mohan Krishna; Chhetri, Ahilya; WILLIAMSON, SHELDON (2023): Software Tools and Datasets for Battery Management System Applications. TechRxiv. Preprint https://doi.org/10.36227/techrxiv.21903531.v1]
	DATASET REALE	https://data.matr.io/1/projects/5d80e633f40526
Stanford Fast Charging Datasets	Dataset costituito da dati ottenuti mediante prove eseguite su batterie commerciali agli ioni di litio in condizioni di ricarica rapida. In particolare, le celle, del tipo litio-ferro- fosfato (LFP)/grafite, prodotte da A123 Systems (APR18650M1A), sono state testate su un	NOTA: le 124 celle commerciali al litio ferro fosfato/grafite, oggetto dei test, sono state ciclate in condizioni di ricarica rapida, con cicli di vita variabili che vanno da 150 a 2.300 cicli (sistemi A123, modello APR18650M1A, capacità nominale di 1,1 Ah a 30 °C). Tutte le celle in questo set di dati sono state caricate con uno dei 224 protocolli di ricarica rapida in sei fasi da 10 minuti.
	dispositivo Arbin LBT a 48 canali. Le celle considerate sono caratterizzate da una capacità nominale di 1,1	[Da: Surya, Sumukh; S, Mohan Krishna; Chhetri, Ahilya; WILLIAMSON, SHELDON (2023): Software Tools and Datasets for Battery Management

	Ah e una tensione	System Applications. TechRxiv. Preprint
	nominale di 3,3 v.	nttps://doi.org/10.3622//techrxiv.21903531.01]
	Set di dati ottenuto	00019f3204
	mediante sperimentazione	[Da: Surya, Sumukh; S, Mohan Krishna; Chhetri,
	agli ioni di litio in condizioni	Tools and Datasets for Battery Management
	di ricarica rapida. Le celle	System Applications. TechRxiv. Preprint
	(LFP)/grafite, prodotte da	https://doi.org/10.5622//techixiv.21905551.01]
	A123 Systems	
Cycle Life Prediction Dataset	della sperimentazione,	
	sono state testate	
	Arbin LBT a 48 canali in una	
	camera di temperatura a	
	convezione forzata impostata su 30°C. Le celle	
	hanno una capacità	
	tensione nominale di 3,3 V	
		https://dota.mondolou.com/dotacats/us/kht0u7t
		g/1
	Set di dati operativi relativi alla batteria agli ioni di litio	NOTA: i set di dati sono stati ottenuti
	Panasonic 18650PF	sperimentalmente presso l'Università del
		Wisconsin-Madison e possono essere utilizzati per testare gli algoritmi della rete neurale e dello stato
		di carica del filtro Kalman o per sviluppare modelli
University of Wisconsin Madison		di batterie. Essi sono destinati a fungere da riferimento in modo che i ricercatori possano
		confrontare il loro algoritmo e le prestazioni del
		modello per un set di dati standard.
		[Da: Surya, Sumukh; S, Mohan Krishna; Chhetri,
		Tools and Datasets for Battery Management
		System Applications. TechRxiv. Preprint
-		
	DATASET REALE	https://github.com/TRI-AMDD/beep
	Dataset che include dati	[Da: Surya, Sumukh; S, Mohan Krishna; Chhetri,
BEEP	batteria (dati dei cicli,	Tools and Datasets for Battery Management
	protocolli utilizzati durante	System Applications. TechRxiv. Preprint.
	gii esperimenti, modellazione del ciclo di	nttps://doi.org/10.36227/techrxiv.21903531.v1]
	vita, dati relativi alla	
	batteria, ecc.)	

	DATASET SIMULATI E REALI	https://github.com/Samuel-Buteau/universal- battery-database
Universal Battery Database	L'Universal Battery Database include dataset gestibili attraverso un software open source per la gestione dei dati delle celle agli ioni di litio. Il software consente anche la gestione di propri dataset sperimentali (es: cicli a lungo termine e EIS- Spettroscopia di impedenza elettrica) sulle batterie agli ioni di litio,	[Da: Surya, Sumukh; S, Mohan Krishna; Chhetri, Ahilya; WILLIAMSON, SHELDON (2023): Software Tools and Datasets for Battery Management System Applications. TechRxiv. Preprint https://doi.org/10.36227/techrxiv.21903531.v1]

Tabella 14: modelli per ottenere dataset sintetici sui guasti associati ai sistemi di conversione DC/DC e DC/AC			
Nome dataset	Dati e informazioni forniti dalla fonte	Fonti	
Guasto alla componentistica dello stadio di potenza dei convertitori	DATASET SINTETICI Modello elettro-termico di convertitori: modello circuitale applicato in processi per la generazione dei profili operativi di convertitori/apparati impiegati in condizioni operative stressanti (sovraccarico, ecc.) da cui è possibile ricavare dataset sintetici.	DH. Wang, Thesis: "Dynamic electro-thermal model of power electronic building block in micro grid: modelling, analysis and simulation", Department of electrical & computer engineering National University of Singapore, 2012.	
Corto circuito e guasto a terra ai terminali del convertitore	DATASET SINTETICI Analisi di guasto: rappresentazione degli andamenti delle grandezze elettriche del convertitore in condizioni di guasto.	ABB Technical Application Papers, "Faults in LVDC microgrids with front-end converters",2015.	

APPENDICE 3

Anomalie e guasti associati ai convertitori di interfaccia

Convertitori switching di tipo unidirezionali e bidirezionali sono utilizzati per la connessione di generatori, sistemi di accumulo ed utenze al bus della rete principale in Corrente Alternata (convertitori DC/AC o inverter) o al bus in Corrente Continua (convertitori DC/DC) di reti e microreti elettriche. Essi sono caratterizzati dallo stadio di potenza e da quello di controllo, oltre che dalla componentistica per il monitoraggio e la comunicazione.

Durante il normale funzionamento, il convertitore è sottoposto a condizioni operative che possono variare nel tempo, a fenomeni di invecchiamento ed usura dovuti all'azione di agenti stressanti di natura elettrica, termica, meccanica o ibrida, secondo la specifica applicazione.

Tali fenomeni possono causare anomalie e/o guasti ai dispositivi dello stadio di potenza, allo stadio di controllo, che include anche i circuiti per il pilotaggio dei componenti a commutazione, e i connettori necessari per gli ingressi e le uscite del convertitore.

le principali anomalie e guasti associati ai sistemi di conversione DC/DC e DC/AC sono di seguito richiamati, con l'indicazione delle possibili conseguenze:

- Guasti alla componentistica dello stadio di potenza: il corretto funzionamento dei componenti a commutazione (MOSFET, IGBT), componenti magnetici (induttori, trasformatori, ecc.) e capacitivi dello stadio di potenza del convertitore è influenzato da diversi fattori, tra i quali la qualità dei materiali utilizzati, le condizioni ambientali, operative, le caratteristiche del circuito e dei sistemi di raffreddamento adottati²⁸.
- Guasti alla componentistica dello stadio di controllo: i sensori ed i circuiti integrati (microcontrollori, Pulse-Width-Modulator, driver, ecc.) utilizzati nello stadio di controllo dei convertitori possono presentare anomalie di funzionamento e/o guasti dovuti a difetti di fabbricazione, alla qualità delle schede elettroniche su cui vengono saldati o a condizioni di Electrical Over Stress (EOS).
- Anomalie legate alla tensione, corrente e frequenza all'interfaccia: i sistemi di conversione possono presentare spegnimenti o limitazioni nel funzionamento attuati come modalità di protezione nel caso in cui la tensione o la frequenza risultino superiori o inferiori ai valori consentiti nel punto di connessione con il bus AC o DC.
- **Corto circuito ai terminali di uscita del convertitore:** il verificarsi di un corto circuito ai terminali di uscita di un convertitore di interfaccia può provocare sovracorrenti tali da distruggere i dispositivi elettronici presenti anche nello stadio d'ingresso²⁹.
- **Corto circuito ai terminali AC di un convertitore DC/AC:** in presenza di condensatori sul lato AC del convertitore, la condizione di corto circuito viene ulteriormente aggravata dalla corrente di scarica dei dispositivi di tipo capacitivo²⁹.
- **Guasto a terra ai terminali d'ingresso o d'uscita del convertitore:** il guasto a terra all'ingresso o all'uscita di un convertitore d'interfaccia comporta il fluire della corrente di guasto nei diversi rami del circuito con conseguenti malfunzionamenti o rotture dei componenti elettronici presenti²⁹.

La letteratura di settore affronta la tematica concentrando l'attenzione prevalentemente sulla fisica del guasto e/o dell'anomalia dei singoli componenti. Gli studi condotti evidenziano, in particolare, la distribuzione dei guasti ai dispositivi degli apparati di conversione riportata in Figura 1³⁰.

²⁸ G. Graditi and G. Adinolfi, "Temperature influence on photovoltaic power optimizer components' reliability," International Symposium on Power Electronics Power Electronics, Electrical Drives, Automation and Motion, Sorrento, Italy, 2012, pp. 1113-1118, doi: 10.1109/SPEEDAM.2012.6264560.
²⁹ ABB, ABB Technical Application Papers, "Faults in LVDC microgrids with front-end converters", 2015.

³⁰ S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran and P. Tavner, "An industry-based survey of reliability in power electronic converters," 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, USA, 2009, pp. 3151-3157, doi: 10.1109/ECCE.2009.5316356.

Si può osservare che i componenti maggiormente interessati da guasti sono quelli a commutazione e quelli capacitivi.

Figura 1 – Distribuzione dei guasti ai dispositivi convertitori di interfaccia³⁰

Nei dispositivi a commutazione condizioni di sovracorrente e sovratensione possono provocare il surriscaldamento del componente³¹. In particolare, l'azione di stress di natura termica possono avere effetti significativi sui fenomeni di breakdown secondario che portano alla distruzione del dispositivo a commutazione. È indispensabile considerare la Safe Operating Area di tali componenti e l'eventuale necessità di opportuni dissipatori nelle fasi di progettazione degli apparati. Bisogna, inoltre, tener presente che il valore della temperatura di giunzione dipende dalla temperatura ambiente come riportato nell'Eq. C1:

$$T_j = T_a + P_d R_{thja}$$

dove:

- T_j è la temperatura di giunzione;
- T_a è la temperatura ambiente;
- P_d è la Potenza dissipata;
- R_{thja} è la resistenza termica giunzione-ambiente.

I valori della resistenza Drain-Source, della tensione Gate-Source dipendono, a loro volta, dalla temperatura di giunzione, come rappresentato nelle seguenti figure tratte da datasheet di MOSFET disponibili in commercio.

(C1)

³¹ S. Yang, D. Xiang, A. Bryant, P. Mawby, L. Ran and P. Tavner, "Condition Monitoring for Device Reliability in Power Electronic Converters: A Review," in IEEE Transactions on Power Electronics, vol. 25, no. 11, pp. 2734-2752, Nov. 2010, doi: 10.1109/TPEL.2010.2049377

Figura 2 – MOSFET: (a) resistenza Drain-Source *vs* Temperatura di giunzione; (b) grafico della corrente Drain-Source in funzione della tensione gate-source per diversi valori della temperatura di giunzione³²

È evidente che il valore della resistenza Drain-Source aumenta all'aumentare della temperatura di giunzione (Figura 2(a)) mentre, in Figura 2(b), si può osservare che il valore della tensione Gate-Source nell'istante di accensione (tensione di soglia V_{th} nell'istante in cui la corrente Drain-Source è diversa da zero) diminuisce alle temperature di giunzione più alte.

Il grafico della tensione V_{th} in funzione della T_a per un MOSFET in carburo di Silicio, riportato nella Figura 3³³, ci fa comprendere che, a fronte delle temperature che hanno caratterizzato gli ultimi fenomeni di ondate di calore, la tensione di soglia potrebbe abbassarsi provocando l'accensione indesiderata del dispositivo a commutazione con conseguenze dannose per il singolo componente ed anche per il convertitore di interfaccia di cui fa parte.

Figura 3 – MOSFET: Tensione di soglia vs Temperatura ambiente³³

Bisogna, inoltre, sottolineare che la temperatura rappresenta un agente stressante anche per i materiali che costituiscono i dispositivi a commutazione. L'impiego di materiali caratterizzati da un diverso

 ³² Datasheet Vishay E Series Power MOSFET siha11n80ae (https://www.vishay.com/docs/92295/siha11n80ae.pdf)

 ³³ Datasheet Power SiC MOSFETs Toshiba TW015N120C

 storage.com/info/TW015N120C datasheet en 20220615.pdf?did=143221&prodName=TW015N120C

comportamento in termini di dilatazione e compressione termica può, infatti, determinare crepe con la conseguente rottura del componente.

Un'ulteriore causa di anomalie e guasti nei dispositivi switching sono le scariche elettrostatiche. In dettaglio, la loro azione può provocare la rottura dell'ossido di gate senza evidenti malfunzionamenti per il componente nell'immediato, determinandone, però, la rottura dopo un periodo di tempo dall'evento.

L'adozione di protezioni e la possibilità di monitorare la carica di gate possono evitare il guasto.

In riferimento ai componenti capacitivi è necessario sottolineare che nei convertitori di interfaccia vengono usati condensatori elettrolitici, ceramici e in film.

La capacità di tali dispositivi varia con la temperatura come riportato in Figura 4³⁴.

Figura 4 – Condensatore: Capacità^{*} vs Temperatura³⁴ ^{*} La capacità C è normalizzata rispetto a C₀ ossia il valore della capacità del condensatore a 20°C, 100 Hz.

I grafici rappresentati in Figura 5³⁵ evidenziano, inoltre, il dimezzamento della vita operativa (espressa in ore) di un condensatore per ogni 10°C di incremento della temperatura.

Figura 5 – Condensatore: Corrente di ripple^{**} e Vita Operativa vs Temperatura³⁵ ** La corrente di ripple I_{AC} è normalizzata rispetto a I_{RAC(1)} ossia il valore massimo di ripple.

³⁴ Datasheet Aluminum Electrolytic Capacitors Vishay 150crz (https://www.vishay.com/docs/28395/150crz.pdf)

³⁵ Datasheet KEMET AEC-Q200 (https://content.kemet.com/datasheets/KEM A4098 A780.pdf)

All'interno dei convertitori di interfaccia, la tensione in uscita viene ottenuta pilotando opportunamente l'accensione e lo spegnimento dei dispositivi a commutazione presenti nel circuito. Tale funzione viene svolta da circuiti integrati denominati "driver". Essi possono presentare comportamenti anomali quando risultano applicate ai loro ingressi o uscite tensioni negative³⁶.

In particolare, le fasi di accensione e spegnimento (Figura 6³⁷) di MOSFET e IGBT sono caratterizzate da transitori di tensione e corrente che, in presenza di componenti parassiti (capacità e induttanze), possono causare la presenza di tensioni negative ai terminali del driver.

Con riferimento all'identificazione dei metodi per la caratterizzazione dei guasti dei convertitori di interfaccia, si fa presente che essa deve essere condotta in maniera tale da analizzare l'impatto di agenti di natura elettrica, termica, ambientale, meccanica o ibridi sul corretto funzionamento dei diversi dispositivi del convertitore. In dettaglio, dal punto di vista degli agenti termici impattanti il funzionamento del convertitore, i diversi componenti sono sottoposti a test accelerati in camera climatica al fine di valutarne il comportamento quando sono sottoposti a cicli termici. Il monitoraggio delle condizioni operative e del funzionamento del dispositivo sottoposto a test consente di valutare il degrado che esso subisce sotto l'azione di stress legati alla temperatura operativa e ambientale. L'azione di tali agenti sui parametri e sulle grandezze caratteristiche dei diversi componenti del convertitore permette anche di caratterizzarne i relativi guasti.

 ³⁶ Frank W., Song J., SOI technology provides robustness against parasitic elements injecting negative voltages, Proceedings PCIM Europe 2015
 ³⁷ P. Bogónez-Franco and J. B. Sendra, "EMI comparison between Si and SiC technology in a boost converter," International Symposium on Electromagnetic Compatibility - EMC EUROPE, Rome, Italy, 2012, pp. 1-4, doi: 10.1109/EMCEurope.2012.6396739.