

SUSTAINABLE ECONOMIC DEVELOPMENT

Accordo di Programma MiSE-ENEA

Ministero dello Sviluppo Economico

RICERCA DI SISTEMA ELETTRICO

Light management in celle a film sottile

Dr. Maria Luisa Addonizio ENEA, UTTP-FOS

ENERGIA ELETTRICA DA FONTE SOLARE Workshop, Roma - 27 maggio 2015

Light management

Ossidi trasparenti e conduttivi (TCO)

- Alta band-gap (> 3 eV) \Rightarrow trasparenza nel range visibile dello spettro
- Alto livello di drogaggio \Rightarrow conducibilità

Usi Industriali del TCO

ENERGIA

Elettrodi trasparenti per celle fotovoltaiche
Vetri basso emissivi
Dispositivi elettrocromici (es. vetri automobili)(da 6 a 14 \$ /m² il solo TCO)ELETTRONICA
Elettrodi trasparenti per display a pannelli piani
TFT's trasparenti, LED's e laser semiconduttori
Domanda TCO glass500M m² by 2012 ~10 B\$

TCO impiegati in dispositivi fotovoltaici

Il TCO è parte integrante della struttura di un dispositivo PV

Impiego: tutte le tecnologie PV a film sottile, celle organiche o ibride, eterogiunzioni **Caratteristiche**

Tipo di cella	TCO di uso corrente	Caratteristiche del TCO
Eterogiunzioni	ITO, ZnO	Buona conducibilità e proprietà interfacciali, bassa temperatura di deposizione, light trapping
CIGS	i-ZnO/Al:ZnO	Stabilità interfacciale al CdS, bassa temperatura di deposizione, resistenza alla diffusione
CdTe	SnO ₂ , Zn ₂ SnO ₄ /Cd ₂ SnO ₄	Interfaccia CdS/CdTe stabile alla temperatura, barriera alla diffusione
Polimeriche o ibride	ZnO, SnO ₂ , TiO ₂	Nanostrutture con alta superficie esposta, accoppiamento della work-function, corretto livello di drogaggio
a-Si; µc-Si	SnO ₂ , ITO, ZnO	Stabilità chimica e termica, buona conducibilità, testurizzazione

Caratteristiche del TCO per celle solari a film sottile di silicio

- 1. Trasparente T > 80% nel range 400 1100 nm
- 2. Conduttivo $\rho < 1 * 10^{-3} \Omega$ cm
- 3. Superficie testurizzata con appropriata morfologia in modo da garantire:
 - Light trapping nella regione IR dello spettro (aumento della corrente fotogenerata (> 25%) e riduzione dello spessore di silicio)
 - effetto anti-riflettente (aumento della radiazione che entra nel dispositivo)

TCO utilizzati: SnO_2 : (F, Sb) In_2O_3 :Sn (ITO) ZnO: (Al, Ga, B)

> Disponibilità di mercato e costi di substrati vetro /TCO

ITO -ampia disponibilità (riduzione riserve di Indio⇒aumento del costo)
SnO₂ -Monopolio ASAHI Comp. (vetri SLG + buffer di SiO₂ ~ 16 €/m²)
ZnO -assenza di un prodotto commerciale per PV a film sottile

Incidenza del costo del substrato (vetro + TCO) sul processo di produzione: ~ il 30% del costo finale del dispositivo

Vantaggi dell' ossido di zinco

- ✓ Ampia disponibilità di zinco in natura
- ✓ Stabilità al plasma di idrogeno (idoneo sia per a-Si:H che per µc-Si:H)
- ✓ Efficace funzione barriera per interdiffusioni dal substrato
- ✓ Poco costoso (ottenibile con processi a bassa temperatura)
- ✓ Valida alternativa sia ai costosi ossidi commerciali di SnO2 che come sostituto dell'ITO a causa della riduzione delle riserve naturali di indio

Tecniche di deposizione del TCO in ENEA

Customized Low Pressure-MOCVD apparatus (ENEA-Elettrorava)

MetalOrganic Chemical Vapour Deposition (LPCVD)

- ✓ Area di deposizione: 30 x 30 cm²
 ✓ B:ZnO (BZO)
- ✓ Alta velocità di deposizione > 2.8 nm/sec
 ✓ Deposito completamente testurizzato

ENEA patent # RM2008A000405 (Metodo per la fabbricazione in linea di strati sottili di ZnO:B trasparente, conduttivo e testurizzato su larga area, e relativo apparato)

RF Magnetron Sputtering (MRC-630)✓ Area di deposizione: 30 x 30 cm²
✓ ZnO: (Al, Ga) (AZO),(GZO), In2O3:Sn (ITO)

Uniformità di spessore e proprietà elettriche Processo perfettamente ripetibile

Tecnica sol-gel

Light trapping in celle solari a film sottile ZnO:B a singola testurizzazione

7

Modifica della superficie:Trattamenti in plasma di Argon - Reactive Ion Etching (RIE) Dispositivi a film sottile di silicio

Lo ZnO prodotto per CVD e modificato con trattamento in plasma di argon ha migliori prestazioni rispetto all'SnO₂ commerciale

Addonizio et al. EUPVSEC 2006, 2007 Addonizio et al. TSF 2009

Strategie di Light trapping per celle solari a film sottile ZnO a doppia testurizzazione per MOCVD

Morphologia e fattore di scattering di superfici di ZnO:B altamente testurizzato

M.L. Addonizio, A. Spadoni, A. Antonaia, Applied Surface Science 287 (2013) Roma, 27 maggio 2015

Elementi innovativi nella strategia TCO nell'ambito del AdP 2012-2014

Testurizzazione diretta del vetro

Metodo : Aluminium Induced Texture (AIT) $4Al + 3SiO_2 \rightarrow 2Al_2O_3 + 3Si$

- ✓ Deposizione del metallo (Al ~ 200nm)
- ✓ Trattamento termico a circa 600°C /40 min
- ✓ Attacco chimico

Immagine SEM di un vetro testurizzato

PER LE NUOVE TECNOLO

✓ Metodo AIT : Ruolo dell'etching chimico
 Effetto del tipo di acido (HF e HF:HNO3) e del tempo di attacco

✓ Deposizione del TCO : ZnO:Ga per sputtering

La morfologia e la rugosità dell'ossido sono fortemente dipendenti dalla morfologia del vetro sottostante

$\mathbf{RMS} =$	140	150	71	78
Angolo Incl. =	15	17	9.7	10.5
Haze =	29	33	25	28

✓ Analisi ottica e morfometrica delle superfici

✓ Sviluppo di routine di calcolo per l'analisi dei particolari morfologici dell'immagine AFM (Analisi di: rugosità, forma, diametro e profondità delle cavità, angoli di scattering)
✓ Relazione tra morfometria delle superfici e proprietà di scattering ottico

Determinare la rugosità migliore capace di produrre uno scattering della luce che dia un efficiente light trapping

Fattore di scattering e distribuzione angolare delle cavità per differenti tempi di etching

Roma, 27 maggio 2015

✓ Realizzazione di dispositivi

anti-riflesso)

Testurizzazione del vetro per wet-etching

Wet etching della superficie del vetro

Condotto in collaborazione con l'Università "Federico II" di Napoli

Vetro commerciale **SodaLime** trattato con soluzioni di acidi diluiti o vapori **RMS=60 nm**

- ✓ Light scattering ad angoli più alti danno un miglior effetto di light trapping all'interno del dispositivo
- ✓ Problemi di uniformità e ripetibilità da ottimizzare

Vetro testurizzato ricoperto di ZnO:Ga depositato per sputtering

RMS=103 nm

Testurizzazione del vetro mediante trattamenti in plasma

Trattamento RIE della superficie del vetro

Reactive Ion Etching

Superficie del vetro trattata in plasma di CF4

Presenza di doppia texture

Sono indotte crescite a doppia testurizzazione

Vetro testurizzato ricoperto di ZnO:B per MOCVD

rms ~125 nm

Strategie di light trapping Strutture periodiche ed aperiodiche

In collaborazione con l'Università del Sannio

Patterning di vetri usati come superstrati per la fabbricazione di celle

Miglioramento dell'assorbimento per modelli di strutture periodiche ed aperiodiche.

Micco,A., et. al.; Light trapping efficiency of periodic and quasiperiodic back-reflectors for thin film solar cells: a comparative study, J. App. Phys. **2013**; *114*.

Roma, 27 maggio 2015

Conclusioni e Prospettive future

 \checkmark I differenti approcci sperimentati per testurizzare il vetro hanno fornito risultati promettenti in termini di morfologia e di scattering della radiazione

✓ Dispositivi su vetro testurizzato hanno fornito prestazioni, in termini di light trapping, comparabili a quelli che utilizzano TCO naturalmente testurizzato

✓ La testurizzazione del substrato di vetro è una valida alternativa tecnologica a costo potenzialmente basso

> Stabilità delle proprietà elettriche a lungo termine del TCO

- > TCO ottimizzati per celle ad eterogiunzione
- > Sviluppo di TCO nanostrutturati per celle ibride

Grazie per l'attenzione

marialuisa.addonizio@enea.it